Product: Phospho-CDK4 (Thr172) Antibody
Catalog: AF8007
Description: Rabbit polyclonal antibody to Phospho-CDK4 (Thr172)
Application: WB IHC IF/ICC
Reactivity: Human, Mouse, Rat
Prediction: Pig, Zebrafish, Bovine, Horse, Sheep, Rabbit, Dog, Xenopus
Mol.Wt.: 34kd; 34kD(Calculated).
Uniprot: P11802
RRID: AB_2840070

View similar products>>

   Size Price Inventory
 100ul $350 In stock
 200ul $450 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
IF/ICC 1:100-1:500, WB 1:1000-3000, IHC 1:50-1:200
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Prediction:
Pig(100%), Zebrafish(85%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Xenopus(92%)
Clonality:
Polyclonal
Specificity:
Phospho-CDK4 (Thr172) Antibody detects endogenous levels of CDK4 only when phosphorylated at Thr172.
RRID:
AB_2840070
Cite Format: Affinity Biosciences Cat# AF8007, RRID:AB_2840070.
Conjugate:
Unconjugated.
Purification:
The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

Cdk 4; cdk4; CDK4 protein; CDK4_HUMAN; Cell division kinase 4; Cell division protein kinase 4; CMM 3; CMM3; Crk3; Cyclin dependent kinase 4; Cyclin-dependent kinase 4; Melanoma cutaneous malignant 3; MGC14458; p34 cdk4; PSK J3; PSK-J3;

Immunogens

Immunogen:
Uniprot:
Gene(ID):
Sequence:
MATSRYEPVAEIGVGAYGTVYKARDPHSGHFVALKSVRVPNGGGGGGGLPISTVREVALLRRLEAFEHPNVVRLMDVCATSRTDREIKVTLVFEHVDQDLRTYLDKAPPPGLPAETIKDLMRQFLRGLDFLHANCIVHRDLKPENILVTSGGTVKLADFGLARIYSYQMALTPVVVTLWYRAPEVLLQSTYATPVDMWSVGCIFAEMFRRKPLFCGNSEADQLGKIFDLIGLPPEDDWPRDVSLPRGAFPPRGPRPVQSVVPEMEESGAQLLLEMLTFNPHKRISAFRALQHSYLHKDEGNPE

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Rabbit
100
Xenopus
92
Zebrafish
85
Chicken
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - P11802 As Substrate

Site PTM Type Enzyme
A2 Acetylation
Y17 Phosphorylation P07948 (LYN) , P07947 (YES1) , P12931 (SRC)
K22 Ubiquitination
K35 Ubiquitination
R101 Methylation
K106 Ubiquitination
K118 Ubiquitination
K142 Ubiquitination
K155 Ubiquitination
T172 Phosphorylation P50613 (CDK7)
T177 Phosphorylation
K211 Ubiquitination
T277 Phosphorylation
K282 Ubiquitination
K297 Ubiquitination

PTMs - P11802 As Enzyme

Substrate Site Source
P04179 (SOD2) S106 Uniprot
P06400 (RB1) T5 Uniprot
P06400 (RB1) S249 Uniprot
P06400 (RB1) T252 Uniprot
P06400 (RB1) T356 Uniprot
P06400 (RB1) T373 Uniprot
P06400 (RB1) S608 Uniprot
P06400 (RB1) S612 Uniprot
P06400 (RB1) S780 Uniprot
P06400 (RB1) S788 Uniprot
P06400 (RB1) S795 Uniprot
P06400 (RB1) S807 Uniprot
P06400 (RB1) S811 Uniprot
P06400 (RB1) T826 Uniprot
P06748 (NPM1) T199 Uniprot
P15923 (TCF3) S139 Uniprot
P15923 (TCF3) S245 Uniprot
P17480 (UBTF) S484 Uniprot
P28749 (RBL1) T369 Uniprot
P28749 (RBL1) S640 Uniprot
P28749 (RBL1) S650 Uniprot
P28749-1 (RBL1) S964 Uniprot
P28749 (RBL1) S975 Uniprot
P38398 (BRCA1) S632 Uniprot
P43694 (GATA4) S105 Uniprot
P84022-1 (SMAD3) T8 Uniprot
P84022 (SMAD3) T179 Uniprot
P84022 (SMAD3) S204 Uniprot
P84022 (SMAD3) S208 Uniprot
P84022-1 (SMAD3) S213 Uniprot
Q06830 (PRDX1) T90 Uniprot
Q08050 (FOXM1) S4 Uniprot
Q08050 (FOXM1) S35 Uniprot
Q08050 (FOXM1) S451 Uniprot
Q08050 (FOXM1) S489 Uniprot
Q08050 (FOXM1) S508 Uniprot
Q08050 (FOXM1) T510 Uniprot
Q08050 (FOXM1) S522 Uniprot
Q08050 (FOXM1) T600 Uniprot
Q08050 (FOXM1) T611 Uniprot
Q08050 (FOXM1) T620 Uniprot
Q08050 (FOXM1) T627 Uniprot
Q08050 (FOXM1) S704 Uniprot
Q08999 (RBL2) T401 Uniprot
Q08999 (RBL2) S672 Uniprot
Q08999 (RBL2) S1035 Uniprot
Q12778 (FOXO1) S249 Uniprot
Q13761 (RUNX3) S356 Uniprot
Q14814 (MEF2D) S98 Uniprot
Q14814 (MEF2D) S110 Uniprot
Q8IZL8 (PELP1) S477 Uniprot
Q8IZL8 (PELP1) S991 Uniprot
Q92879 (CELF1) S302 Uniprot
Q96KS0 (EGLN2) S130 Uniprot
Q9BQA1 (WDR77) T5 Uniprot
Q9BQA1 (WDR77) S264 Uniprot
Q9BQA1 (WDR77) S306 Uniprot
Q9NS23-2 (RASSF1) S203 Uniprot
Q9NS23 (RASSF1) S207 Uniprot

Research Backgrounds

Function:

Ser/Thr-kinase component of cyclin D-CDK4 (DC) complexes that phosphorylate and inhibit members of the retinoblastoma (RB) protein family including RB1 and regulate the cell-cycle during G(1)/S transition. Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complexes and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase. Hypophosphorylates RB1 in early G(1) phase. Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals. Also phosphorylates SMAD3 in a cell-cycle-dependent manner and represses its transcriptional activity. Component of the ternary complex, cyclin D/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex.

PTMs:

Phosphorylation at Thr-172 is required for enzymatic activity. Phosphorylated, in vitro, at this site by CCNH-CDK7, but, in vivo, appears to be phosphorylated by a proline-directed kinase. In the cyclin D-CDK4-CDKN1B complex, this phosphorylation and consequent CDK4 enzyme activity, is dependent on the tyrosine phosphorylation state of CDKN1B. Thus, in proliferating cells, CDK4 within the complex is phosphorylated on Thr-172 in the T-loop. In resting cells, phosphorylation on Thr-172 is prevented by the non-tyrosine-phosphorylated form of CDKN1B.

Subcellular Location:

Cytoplasm. Nucleus. Nucleus membrane.
Note: Cytoplasmic when non-complexed. Forms a cyclin D-CDK4 complex in the cytoplasm as cells progress through G(1) phase. The complex accumulates on the nuclear membrane and enters the nucleus on transition from G(1) to S phase. Also present in nucleoli and heterochromatin lumps. Colocalizes with RB1 after release into the nucleus.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

Component of the D-CDK4 complex, composed of CDK4 and some D-type G1 cyclin (CCND1, CCND2 or CCND3). Interacts directly in the complex with CCND1, CCND2 or CCND3. Interacts with SEI1 and ZNF655. Forms a ternary complex, cyclin D-CDK4-CDKN1B, involved in modulating CDK4 enzymatic activity. Interacts directly with CDKN1B (phosphorylated on 'Tyr-88' and 'Tyr-89'); the interaction allows assembly of the cyclin D-CDK4 complex, Thr-172 phosphorylation, nuclear translocation and enhances the cyclin D-CDK4 complex activity. CDK4 activity is either inhibited or enhanced depending on stoichiometry of complex. The non-tyrosine-phosphorylated form of CDKN1B prevents T-loop phosphorylation of CDK4 producing inactive CDK4. Interacts (unphosphorylated form) with CDK2. Also forms ternary complexes with CDKN1A or CDKN2A. Interacts directly with CDKN1A (via its N-terminal); the interaction promotes the assembly of the cyclin D-CDK4 complex, its nuclear translocation and promotes the cyclin D-dependent enzyme activity of CDK4. Interacts with CCND1; the interaction is prevented with the binding of CCND1 to INSM1 during cell cycle progression. Probably forms a complex composed of chaperones HSP90 and HSP70, co-chaperones CDC37, PPP5C, TSC1 and client protein TSC2, CDK4, AKT, RAF1 and NR3C1; this complex does not contain co-chaperones STIP1/HOP and PTGES3/p23. Interacts with CEBPA (when phosphorylated). Interacts with FNIP1 and FNIP2.

Family&Domains:

Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. CDC2/CDKX subfamily.

Research Fields

· Cellular Processes > Cell growth and death > Cell cycle.   (View pathway)

· Cellular Processes > Cell growth and death > p53 signaling pathway.   (View pathway)

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Tight junction.   (View pathway)

· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Measles.

· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Specific types > Pancreatic cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Glioma.   (View pathway)

· Human Diseases > Cancers: Specific types > Melanoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Bladder cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Non-small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Breast cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.   (View pathway)

· Organismal Systems > Immune system > T cell receptor signaling pathway.   (View pathway)

References

1). 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes injury-induced vascular neointima formation in mice. FASEB JOURNAL, 2019 (PubMed: 31216422) [IF=4.8]

Application: WB    Species: human    Sample: VSMCs

Figure 2.| TCDD treatment promotes VSMC proliferation in vitro. A) Cell cycle of VSMCs treated with TCDD was analyzed by FACS. B) Cell population in G0/G1, S, and G2/M phases was quantified. *P ,0.05 vs. vehicle (n = 4). C)The mRNA levels of PCNA,cyclin D1, and CDK4 in TCDDtreated VSMCs were determined by RT-PCR. *P , 0.05vs. vehicle (n = 5). D) PCNA,cyclin D1 TCDD-treated VSMCs were analyzed by Western blot. E) Western blot analysis of the phosphorylation of CDK4(Thr172) (p-CDK4) and the expression of total CDK4 (TCDK4). F) The expression of pCDK4 was quantified. *P , 0.05 vs. vehicle (n = 3).

2). Aaptamine attenuates the proliferation and progression of non-small cell lung carcinoma. PHARMACEUTICAL BIOLOGY, 2020 (PubMed: 33027592) [IF=3.8]

Application: WB    Species: human    Sample: A549 and H1299 cells

Figure 4. |Aaptamine balks cell cycle progression of NSCLC cells. s (C) and immunoblotting assay (D and E) of A549 and H1299 cells treated with aaptamine (0, 8, 16 and 32 lg/mL), respectively, for 48 h with densitometric analysis showing that aaptamine could decrease the mRNA and protein level of cell cycle-specific driver kinases in a dose-dependent manner. p < 0.05, p < 0.01 and p < 0.001 vs. untreated control.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.