Product: TLR1 Antibody
Catalog: DF6179
Description: Rabbit polyclonal antibody to TLR1
Application: WB IHC
Reactivity: Human, Mouse, Rat
Prediction: Bovine, Horse, Rabbit, Dog
Mol.Wt.: 90kDa; 90kD(Calculated).
Uniprot: Q15399
RRID: AB_2838145

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
WB 1:500-1:2000, IHC 1:50-1:200
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Prediction:
Bovine(80%), Horse(88%), Rabbit(89%), Dog(90%)
Clonality:
Polyclonal
Specificity:
TLR1 Antibody detects endogenous levels of total TLR1.
RRID:
AB_2838145
Cite Format: Affinity Biosciences Cat# DF6179, RRID:AB_2838145.
Conjugate:
Unconjugated.
Purification:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

CD281; CD281 antigen; KIAA0012; LPRS5; rsc786; TIL; TIL. LPRS5; Tlr1; TLR1_HUMAN; Toll (Drosophila) homolog; Toll like receptor 1; Toll-like receptor 1; Toll/interleukin-1 receptor-like protein;

Immunogens

Immunogen:
Uniprot:
Gene(ID):
Expression:
Q15399 TLR1_HUMAN:

Ubiquitous. Highly expressed in spleen, ovary, peripheral blood leukocytes, thymus and small intestine.

Description:
Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-3). TLRs recognize conserved motifs found in various pathogens and mediate defense responses. Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes. The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the TIR domain. Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains including MyD88 (myeloid differentiation factor), MAL/TIRAP (MyD88-adaptor-like/TIR-associated protein), TRIF (Toll-receptor-associated activator of interferon), and TRAM (Toll-receptor-associated molecule). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK. Activation of IKK leads to the degradation of IκB that normally maintains NF-κB inactivity by sequestering it in the cytoplasm. Toll-like receptor expression is highest in peripheral blood leukocytes, monocytes, macrophages, though TLR1 expression may be less restricted than other family members (4,5). TLR1 associates with TLR2 to cooperatively mediate immune responses to bacterial lipoproteins and lead to NF-κB activation (6,7). TLR1 shows highest homology to TLR6, which shares 69% sequence identity (8).
Sequence:
MTSIFHFAIIFMLILQIRIQLSEESEFLVDRSKNGLIHVPKDLSQKTTILNISQNYISELWTSDILSLSKLRILIISHNRIQYLDISVFKFNQELEYLDLSHNKLVKISCHPTVNLKHLDLSFNAFDALPICKEFGNMSQLKFLGLSTTHLEKSSVLPIAHLNISKVLLVLGETYGEKEDPEGLQDFNTESLHIVFPTNKEFHFILDVSVKTVANLELSNIKCVLEDNKCSYFLSILAKLQTNPKLSNLTLNNIETTWNSFIRILQLVWHTTVWYFSISNVKLQGQLDFRDFDYSGTSLKALSIHQVVSDVFGFPQSYIYEIFSNMNIKNFTVSGTRMVHMLCPSKISPFLHLDFSNNLLTDTVFENCGHLTELETLILQMNQLKELSKIAEMTTQMKSLQQLDISQNSVSYDEKKGDCSWTKSLLSLNMSSNILTDTIFRCLPPRIKVLDLHSNKIKSIPKQVVKLEALQELNVAFNSLTDLPGCGSFSSLSVLIIDHNSVSHPSADFFQSCQKMRSIKAGDNPFQCTCELGEFVKNIDQVSSEVLEGWPDSYKCDYPESYRGTLLKDFHMSELSCNITLLIVTIVATMLVLAVTVTSLCSYLDLPWYLRMVCQWTQTRRRARNIPLEELQRNLQFHAFISYSGHDSFWVKNELLPNLEKEGMQICLHERNFVPGKSIVENIITCIEKSYKSIFVLSPNFVQSEWCHYELYFAHHNLFHEGSNSLILILLEPIPQYSIPSSYHKLKSLMARRTYLEWPKEKSKRGLFWANLRAAINIKLTEQAKK

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Dog
90
Rabbit
89
Horse
88
Bovine
80
Pig
70
Chicken
67
Xenopus
45
Zebrafish
45
Sheep
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - Q15399 As Substrate

Site PTM Type Enzyme
S44 Phosphorylation
T48 Phosphorylation
N51 N-Glycosylation
S53 Phosphorylation
Y56 Phosphorylation
N163 N-Glycosylation
N330 N-Glycosylation
K416 Methylation
S420 Phosphorylation
T422 Phosphorylation
N429 N-Glycosylation
S431 Phosphorylation
T529 Phosphorylation
K537 Ubiquitination
S678 Phosphorylation
T685 Phosphorylation
S690 Phosphorylation
Y691 Phosphorylation

Research Backgrounds

Function:

Participates in the innate immune response to microbial agents. Specifically recognizes diacylated and triacylated lipopeptides. Cooperates with TLR2 to mediate the innate immune response to bacterial lipoproteins or lipopeptides. Forms the activation cluster TLR2:TLR1:CD14 in response to triacylated lipopeptides, this cluster triggers signaling from the cell surface and subsequently is targeted to the Golgi in a lipid-raft dependent pathway. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response.

Subcellular Location:

Cell membrane>Single-pass type I membrane protein. Cytoplasmic vesicle>Phagosome membrane>Single-pass type I membrane protein. Membrane raft. Golgi apparatus.
Note: Does not reside in lipid rafts before stimulation but accumulates increasingly in the raft upon the presence of the microbial ligand. In response to triacylated lipoproteins, TLR2:TLR1 heterodimers are recruited in lipid rafts, this recruitment determine the intracellular targeting to the Golgi apparatus.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Tissue Specificity:

Ubiquitous. Highly expressed in spleen, ovary, peripheral blood leukocytes, thymus and small intestine.

Subunit Structure:

Interacts (via extracellular domain) with TLR2. TLR2 seems to exist in heterodimers with either TLR1 or TLR6 before stimulation by the ligand. The heterodimers form bigger oligomers in response to their corresponding ligands as well as further heterotypic associations with other receptors such as CD14 and/or CD36. The activation cluster TLR2:TLR1:CD14 forms in response to triacylated lipopeptides. Binds MYD88 (via TIR domain). Interacts with CNPY3 (By similarity).

Family&Domains:

The TIR domain mediates NAD(+) hydrolase (NADase) activity. Self-association of TIR domains is required for NADase activity.

Belongs to the Toll-like receptor family.

Research Fields

· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.

· Organismal Systems > Immune system > Toll-like receptor signaling pathway.   (View pathway)

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.