TIGAR Antibody - #DF13321
Product: | TIGAR Antibody |
Catalog: | DF13321 |
Description: | Rabbit polyclonal antibody to TIGAR |
Application: | WB IF/ICC |
Reactivity: | Human |
Mol.Wt.: | 30kDa; 30kD(Calculated). |
Uniprot: | Q9NQ88 |
RRID: | AB_2846340 |
Related Downloads
Protocols
Product Info
*The optimal dilutions should be determined by the end user.
*Tips:
WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.
Cite Format: Affinity Biosciences Cat# DF13321, RRID:AB_2846340.
Fold/Unfold
6-bisphosphatase TIGAR; C12ORF5; chromosome 12 open reading frame 5; FR2BP; Fructose-2,6-bisphosphatase TIGAR; Fructose-2,6-bisphosphate 2-phosphatase; Probable fructose 2,6 bisphosphatase TIGAR; Probable fructose-2; tigar; TIGAR_HUMAN; TP53 induced glycolysis and apoptosis regulator; TP53 induced glycolysis regulatory phosphatase; TP53-induced glycolysis and apoptosis regulator; Transactivated by NS3TP2 protein;
Immunogens
Expressed in the brain (PubMed:22887998). Expressed in breast tumors (PubMed:21820150). Expressed in glioblastomas (PubMed:22887998).
- Q9NQ88 TIGAR_HUMAN:
- Protein BLAST With
- NCBI/
- ExPASy/
- Uniprot
MARFALTVVRHGETRFNKEKIIQGQGVDEPLSETGFKQAAAAGIFLNNVKFTHAFSSDLMRTKQTMHGILERSKFCKDMTVKYDSRLRERKYGVVEGKALSELRAMAKAAREECPVFTPPGGETLDQVKMRGIDFFEFLCQLILKEADQKEQFSQGSPSNCLETSLAEIFPLGKNHSSKVNSDSGIPGLAASVLVVSHGAYMRSLFDYFLTDLKCSLPATLSRSELMSVTPNTGMSLFIINFEEGREVKPTVQCICMNLQDHLNGLTETR
PTMs - Q9NQ88 As Substrate
Site | PTM Type | Enzyme | Source |
---|---|---|---|
K20 | Ubiquitination | Uniprot | |
T34 | Phosphorylation | Uniprot | |
K37 | Methylation | Uniprot | |
K37 | Ubiquitination | Uniprot | |
K50 | Acetylation | Uniprot | |
R61 | Methylation | Uniprot | |
K63 | Ubiquitination | Uniprot | |
T80 | Phosphorylation | Uniprot | |
Y83 | Phosphorylation | Uniprot | |
S85 | Phosphorylation | Uniprot | |
K91 | Ubiquitination | Uniprot | |
K98 | Ubiquitination | Uniprot | |
S101 | Phosphorylation | Uniprot | |
K129 | Ubiquitination | Uniprot | |
K150 | Ubiquitination | Uniprot | |
S154 | Phosphorylation | Uniprot | |
S157 | Phosphorylation | Uniprot | |
K174 | Ubiquitination | Uniprot | |
S184 | Phosphorylation | Uniprot | |
S192 | Phosphorylation | Uniprot | |
S204 | Phosphorylation | Uniprot |
Research Backgrounds
Fructose-bisphosphatase hydrolyzing fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate. Acts as a negative regulator of glycolysis by lowering intracellular levels of fructose-2,6-bisphosphate in a p53/TP53-dependent manner, resulting in the pentose phosphate pathway (PPP) activation and NADPH production. Contributes to the generation of reduced glutathione to cause a decrease in intracellular reactive oxygen species (ROS) content, correlating with its ability to protect cells from oxidative or metabolic stress-induced cell death. Plays a role in promoting protection against cell death during hypoxia by decreasing mitochondria ROS levels in a HK2-dependent manner through a mechanism that is independent of its fructose-bisphosphatase activity. In response to cardiac damage stress, mediates p53-induced inhibition of myocyte mitophagy through ROS levels reduction and the subsequent inactivation of BNIP3. Reduced mitophagy results in an enhanced apoptotic myocyte cell death, and exacerbates cardiac damage (By similarity). Plays a role in adult intestinal regeneration; contributes to the growth, proliferation and survival of intestinal crypts following tissue ablation. Plays a neuroprotective role against ischemic brain damage by enhancing PPP flux and preserving mitochondria functions (By similarity). Protects glioma cells from hypoxia- and ROS-induced cell death by inhibiting glycolysis and activating mitochondrial energy metabolism and oxygen consumption in a TKTL1-dependent and p53/TP53-independent manner. Plays a role in cancer cell survival by promoting DNA repair through activating PPP flux in a CDK5-ATM-dependent signaling pathway during hypoxia and/or genome stress-induced DNA damage responses. Involved in intestinal tumor progression.
Cytoplasm. Nucleus. Mitochondrion.
Note: Translocated to the mitochondria during hypoxia in a HIF1A-dependent manner (PubMed:23185017). Colocalizes with HK2 in the mitochondria during hypoxia (PubMed:23185017). Translocated to the nucleus during hypoxia and/or genome stress-induced DNA damage responses in cancer cells (PubMed:25928429). Translocation to the mitochondria is enhanced in ischemic cortex after reperfusion and/or during oxygen and glucose deprivation (OGD)/reoxygenation insult in primary neurons (By similarity).
Expressed in the brain. Expressed in breast tumors. Expressed in glioblastomas.
Interacts with HK2; the interaction increases hexokinase HK2 activity in a hypoxia- and HIF1A-dependent manner, resulting in the regulation of mitochondrial membrane potential, thus increasing NADPH production and decreasing intracellular ROS levels.
Belongs to the phosphoglycerate mutase family.
Research Fields
· Human Diseases > Cancers: Overview > Central carbon metabolism in cancer. (View pathway)
· Metabolism > Carbohydrate metabolism > Fructose and mannose metabolism.
Restrictive clause
Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.
For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.