Product: AMPKgamma2 Antibody
Catalog: AF9006
Description: Rabbit polyclonal antibody to AMPKgamma2
Application: WB
Reactivity: Human, Mouse, Rat
Prediction: Pig, Rabbit, Dog
Mol.Wt.: 65kDa; 63kD(Calculated).
Uniprot: Q9UGJ0
RRID: AB_2843197

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
WB 1:1000
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Prediction:
Pig(90%), Rabbit(80%), Dog(80%)
Clonality:
Polyclonal
Specificity:
AMPKgamma2 Antibody detects endogenous levels of total AMPKgamma2.
RRID:
AB_2843197
Cite Format: Affinity Biosciences Cat# AF9006, RRID:AB_2843197.
Conjugate:
Unconjugated.
Purification:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

5''-AMP-activated protein kinase subunit gamma-2; AAKG; AAKG2; AAKG2_HUMAN; AMPK gamma2; AMPK subunit gamma 2; AMPK subunit gamma-2; CMH6; H91620p; Prkag2; Protein kinase AMP activated gamma 2 non catalytic subunit; WPWS;

Immunogens

Immunogen:
Uniprot:
Gene(ID):
Expression:
Q9UGJ0 AAKG2_HUMAN:

Isoform B is ubiquitously expressed except in liver and thymus. The highest level is detected in heart with abundant expression in placenta and testis.

Sequence:
MGSAVMDTKKKKDVSSPGGSGGKKNASQKRRSLRVHIPDLSSFAMPLLDGDLEGSGKHSSRKVDSPFGPGSPSKGFFSRGPQPRPSSPMSAPVRPKTSPGSPKTVFPFSYQESPPRSPRRMSFSGIFRSSSKESSPNSNPATSPGGIRFFSRSRKTSGLSSSPSTPTQVTKQHTFPLESYKHEPERLENRIYASSSPPDTGQRFCPSSFQSPTRPPLASPTHYAPSKAAALAAALGPAEAGMLEKLEFEDEAVEDSESGVYMRFMRSHKCYDIVPTSSKLVVFDTTLQVKKAFFALVANGVRAAPLWESKKQSFVGMLTITDFINILHRYYKSPMVQIYELEEHKIETWRELYLQETFKPLVNISPDASLFDAVYSLIKNKIHRLPVIDPISGNALYILTHKRILKFLQLFMSDMPKPAFMKQNLDELGIGTYHNIAFIHPDTPIIKALNIFVERRISALPVVDESGKVVDIYSKFDVINLAAEKTYNNLDITVTQALQHRSQYFEGVVKCNKLEILETIVDRIVRAEVHRLVVVNEADSIVGIISLSDILQALILTPAGAKQKETETE

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
90
Dog
80
Rabbit
80
Xenopus
70
Horse
0
Bovine
0
Sheep
0
Zebrafish
0
Chicken
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - Q9UGJ0 As Substrate

Site PTM Type Enzyme
S32 Phosphorylation
S41 Phosphorylation
S42 Phosphorylation
S55 Phosphorylation
K62 Methylation
S65 Phosphorylation
S71 Phosphorylation
S73 Phosphorylation
S86 Phosphorylation
S87 Phosphorylation
S90 Phosphorylation
T97 Phosphorylation
S98 Phosphorylation
S101 Phosphorylation
S109 Phosphorylation
S117 Phosphorylation
S122 Phosphorylation
S129 Phosphorylation
S130 Phosphorylation
S131 Phosphorylation
S135 Phosphorylation
T142 Phosphorylation
S143 Phosphorylation
S151 Phosphorylation
S153 Phosphorylation
T156 Phosphorylation
S157 Phosphorylation
S160 Phosphorylation
S161 Phosphorylation
S162 Phosphorylation
S164 Phosphorylation
T165 Phosphorylation
T167 Phosphorylation
Y180 Phosphorylation
S196 Phosphorylation
S211 Phosphorylation
S219 Phosphorylation
Y223 Phosphorylation
S309 Phosphorylation
K475 Ubiquitination

Research Backgrounds

Function:

AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.

PTMs:

Phosphorylated by ULK1; leading to negatively regulate AMPK activity and suggesting the existence of a regulatory feedback loop between ULK1 and AMPK.

Tissue Specificity:

Isoform B is ubiquitously expressed except in liver and thymus. The highest level is detected in heart with abundant expression in placenta and testis.

Subunit Structure:

AMPK is a heterotrimer of an alpha catalytic subunit (PRKAA1 or PRKAA2), a beta (PRKAB1 or PRKAB2) and a gamma non-catalytic subunits (PRKAG1, PRKAG2 or PRKAG3). Interacts with FNIP1 and FNIP2.

Family&Domains:

The AMPK pseudosubstrate motif resembles the sequence around sites phosphorylated on target proteins of AMPK, except the presence of a non-phosphorylatable residue in place of Ser. In the absence of AMP this pseudosubstrate sequence may bind to the active site groove on the alpha subunit (PRKAA1 or PRKAA2), preventing phosphorylation by the upstream activating kinase STK11/LKB1.

The 4 CBS domains mediate binding to nucleotides. Of the 4 potential nucleotide-binding sites, 3 are occupied, designated as sites 1, 3, and 4 based on the CBS modules that provide the acidic residue for coordination with the 2'- and 3'-hydroxyl groups of the ribose of AMP. Of these, site 4 appears to be a structural site that retains a tightly held AMP molecule (AMP 3). The 2 remaining sites, 1 and 3, can bind either AMP, ADP or ATP. Site 1 (AMP, ADP or ATP 1) is the high-affinity binding site and likely accommodates AMP or ADP. Site 3 (AMP, ADP or ATP 2) is the weakest nucleotide-binding site on the gamma subunit, yet it is exquisitely sensitive to changes in nucleotide levels and this allows AMPK to respond rapidly to changes in cellular energy status. Site 3 is likely to be responsible for protection of a conserved threonine in the activation loop of the alpha catalytic subunit through conformational changes induced by binding of AMP or ADP.

Belongs to the 5'-AMP-activated protein kinase gamma subunit family.

Research Fields

· Cellular Processes > Cellular community - eukaryotes > Tight junction.   (View pathway)

· Environmental Information Processing > Signal transduction > FoxO signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > AMPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Apelin signaling pathway.   (View pathway)

· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.

· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).

· Human Diseases > Cardiovascular diseases > Hypertrophic cardiomyopathy (HCM).

· Organismal Systems > Aging > Longevity regulating pathway.   (View pathway)

· Organismal Systems > Aging > Longevity regulating pathway - multiple species.   (View pathway)

· Organismal Systems > Environmental adaptation > Circadian rhythm.   (View pathway)

· Organismal Systems > Endocrine system > Insulin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

· Organismal Systems > Endocrine system > Oxytocin signaling pathway.

· Organismal Systems > Endocrine system > Glucagon signaling pathway.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.