Product: Cytochrome c Oxidase 1 Antibody
Catalog: DF8920
Description: Rabbit polyclonal antibody to Cytochrome c Oxidase 1
Application: WB IHC IF/ICC
Reactivity: Human, Mouse, Rat
Prediction: Pig, Zebrafish, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
Mol.Wt.: 57 kDa, 73 kDa; 57kD(Calculated).
Uniprot: P00395
RRID: AB_2842116

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
WB 1:1000-3000, IF/ICC 1:100-1:500, IHC 1:50-1:200
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Prediction:
Pig(100%), Zebrafish(90%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(90%), Xenopus(90%)
Clonality:
Polyclonal
Specificity:
Cytochrome c Oxidase 1 Antibody detects endogenous levels of total Cytochrome c Oxidase 1.
RRID:
AB_2842116
Cite Format: Affinity Biosciences Cat# DF8920, RRID:AB_2842116.
Conjugate:
Unconjugated.
Purification:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

COI; COX I; COX1; COX1_HUMAN; COXI; Cytochrome c oxidase polypeptide I; Cytochrome c oxidase subunit 1; Cytochrome C Oxidase subunit I; Mitochondrially encoded cytochrome c oxidase I; MT CO1; MT-CO1; MTCO 1; MTCO1;

Immunogens

Immunogen:
Uniprot:
Gene(ID):
Sequence:
MFADRWLFSTNHKDIGTLYLLFGAWAGVLGTALSLLIRAELGQPGNLLGNDHIYNVIVTAHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWLLPPSLLLLLASAMVEAGAGTGWTVYPPLAGNYSHPGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMTQYQTPLFVWSVLITAVLLLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGMDVDTRAYFTSATMIIAIPTGVKVFSWLATLHGSNMKWSAAVLWALGFIFLFTVGGLTGIVLANSSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFIHWFPLFSGYTLDQTYAKIHFTIMFIGVNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNILSSVGSFISLTAVMLMIFMIWEAFASKRKVLMVEEPSMNLEWLYGCPPPYHTFEEPVYMKS

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Rabbit
100
Xenopus
90
Zebrafish
90
Chicken
90
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - P00395 As Substrate

Site PTM Type Enzyme
T17 Phosphorylation
Y19 Phosphorylation
T31 Phosphorylation
S34 Phosphorylation
T316 Phosphorylation
S330 Phosphorylation

Research Backgrounds

Function:

Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.

Subcellular Location:

Mitochondrion inner membrane>Multi-pass membrane protein.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

Component of the cytochrome c oxidase (complex IV, CIV), a multisubunit enzyme composed of 14 subunits. The complex is composed of a catalytic core of 3 subunits MT-CO1, MT-CO2 and MT-CO3, encoded in the mitochondrial DNA, and 11 supernumerary subunits COX4I1 (or COX4I2), COX5A, COX5B, COX6A1 (or COX6A2), COX6B1 (or COX6B2), COX6C, COX7A2 (or COX7A1), COX7B, COX7C, COX8A and NDUFA4, which are encoded in the nuclear genome. The complex exists as a monomer or a dimer and forms supercomplexes (SCs) in the inner mitochondrial membrane with NADH-ubiquinone oxidoreductase (complex I, CI) and ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII), resulting in different assemblies (supercomplex SCI(1)III(2)IV(1) and megacomplex MCI(2)III(2)IV(2)). As a newly synthesized protein, rapidly incorporates into a multi-subunit assembly intermediate in the inner membrane, called MITRAC (mitochondrial translation regulation assembly intermediate of cytochrome c oxidase) complex, whose core components are COA3/MITRAC12 and COX14. Within the MITRAC complex, interacts with COA3 and with SMIM20/MITRAC7; the interaction with SMIM20 stabilizes the newly synthesized MT-CO1 and prevents its premature turnover. Interacts with TMEM177 in a COX20-dependent manner.

Family&Domains:

Belongs to the heme-copper respiratory oxidase family.

Research Fields

· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).

· Human Diseases > Neurodegenerative diseases > Alzheimer's disease.

· Human Diseases > Neurodegenerative diseases > Parkinson's disease.

· Human Diseases > Neurodegenerative diseases > Huntington's disease.

· Metabolism > Energy metabolism > Oxidative phosphorylation.

· Metabolism > Global and overview maps > Metabolic pathways.

· Organismal Systems > Circulatory system > Cardiac muscle contraction.   (View pathway)

References

1). A classical herbal formula alleviates high-fat diet induced nonalcoholic steatohepatitis (NASH) via targeting mitophagy to rehabilitate dysfunctional mitochondria, validated by UPLC-HRMS identification combined with in vivo experiment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2023 (PubMed: 37939615) [IF=7.5]

Application: WB    Species: Mouse    Sample:

Fig. 7. Effects of SG formula on mitochondrial function of HFD induced - NASH model. (A) Bar graph of the hepatic ATP content in each group. (B-E) Representative western blot images and bar graphs of the relative expressions of MT-CO1, MT-CO2 and MT-CO3 in each group. * , * *, and * ** represent P 

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.