Price Size
$280 100ul
$350 200ul

Same day delivery

Contact distributor
  • Product Name
    Phospho-Akt(Ser473) Antibody
  • Catalog No.
    AF0016
  • Source
    Rabbit
  • Application
    WB,IHC,IF/ICC,ELISA
  • Reactivity
    Hm,Ms,Rt
  • UniProt
  • Mol.Wt.
    60kDa
  • Concentration
    1mg/ml
  • Browse similar products>>

Product Information

Alternative Names:Expand▼

AKT 1; AKT; AKT1; AKT1_HUMAN; MGC99656; PKB; PKB-ALPHA; PRKBA; Protein Kinase B Alpha; Protein kinase B; Proto-oncogene c-Akt; RAC Alpha; RAC; RAC-alpha serine/threonine-protein kinase; RAC-PK-alpha; Akt2; AKT2_HUMAN; HIHGHH; murine thymoma viral (v-akt) homolog-2; PKB; PKB beta; PKBB; PKBBETA; PRKBB; Protein kinase Akt 2; Protein kinase Akt-2; Protein kinase B beta; rac protein kinase beta; RAC-BETA; RAC-beta serine/threonine-protein kinase; RAC-PK-beta; v akt murine thymoma viral oncogene homolog 2; Akt3; AKT3 kinase; AKT3_HUMAN; DKFZp434N0250; MPPH; PKB gamma; PKBG; PRKBG; Protein kinase Akt-3; Protein Kinase AKT3; Protein kinase B gamma; RAC gamma; RAC gamma serine/threonine protein kinase; RAC-gamma serine/threonine-protein kinase; RAC-PK-gamma; RACPK Gamma; Serine threonine protein kinase Akt 3; Serine threonine protein kinase Akt3; STK 2; STK-2; STK2; V akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma); V akt murine thymoma viral oncogene homolog 3; V akt murine thymoma viral oncogene homolog 3 protein kinase B gamma;

Applications:

WB 1:500-1:2000 IHC 1:50-1:200 IF/ICC 1:100-1:500, ELISA(peptide) 1:20000-1:40000

Reactivity:

Human,Mouse,Rat

Source:

Rabbit

Clonality:

Polyclonal

Purification:

The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho- and non-phospho-peptide affinity columns.

Specificity:

Phospho-Akt(Ser473) Antibody detects endogenous levels of Akt only when phosphorylated at Sersine 473.

Format:

Liquid

Concentration:

1mg/ml

Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

Immunogen Information

Immunogen:

A synthesized peptide derived from human Akt around the phosphorylation site of Sersine 473.

Uniprot:



>>Visit The Human Protein Atlas

Gene id:

Molecular Weight:

Observed Mol.Wt.: 60kDa.
Predicted Mol.Wt.: 56kDa.

Subcellular Location:

Cytoplasm. Nucleus. Cell membrane. Nucleus after activation by integrin-linked protein kinase 1 (ILK1). Nuclear translocation is enhanced by interaction with TCL1A. Phosphorylation on Tyr-176 by TNK2 results in its localization to the cell membrane where it is targeted for further phosphorylations on Thr-308 and Ser-473 leading to its activation and the activated form translocates to the nucleus.

Tissue Specificity:

Expressed in prostate cancer and levels increase from the normal to the malignant state (at protein level). Expressed in all human cell types so far analyzed. The Tyr-176 phosphorylated form shows a significant increase in expression in breast cancers during the progressive stages i.e. normal to hyperplasia (ADH), ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC) and lymph node metastatic (LNMM) stages.

Description:

an AGC kinase that plays a critical role in controlling the balance between survival and AP0ptosis. Phosphorylated and activated by PDK1 in the PI3 kinase pathway. Mediates survival signals downstream of PI3 kinase and several growth factor receptors by phosphorylating AP0pototic proteins. First found in a mouse transforming retrovirus. Tumorigenic in a mouse lymphoma model and activated (by phospho-Akt staining) and/or overexpressed in a number of cancers including breast, prostate, lung, pancreatic, liver, ovarian and colorectal. Inhibitor: RX-0201. Substrates include tuberin, Bad, Forkhead transcription factors, caspase-9, and glycogen synthase kinase-3.

Sequence:
        10         20         30         40         50
MSDVAIVKEG WLHKRGEYIK TWRPRYFLLK NDGTFIGYKE RPQDVDQREA
60 70 80 90 100
PLNNFSVAQC QLMKTERPRP NTFIIRCLQW TTVIERTFHV ETPEEREEWT
110 120 130 140 150
TAIQTVADGL KKQEEEEMDF RSGSPSDNSG AEEMEVSLAK PKHRVTMNEF
160 170 180 190 200
EYLKLLGKGT FGKVILVKEK ATGRYYAMKI LKKEVIVAKD EVAHTLTENR
210 220 230 240 250
VLQNSRHPFL TALKYSFQTH DRLCFVMEYA NGGELFFHLS RERVFSEDRA
260 270 280 290 300
RFYGAEIVSA LDYLHSEKNV VYRDLKLENL MLDKDGHIKI TDFGLCKEGI
310 320 330 340 350
KDGATMKTFC GTPEYLAPEV LEDNDYGRAV DWWGLGVVMY EMMCGRLPFY
360 370 380 390 400
NQDHEKLFEL ILMEEIRFPR TLGPEAKSLL SGLLKKDPKQ RLGGGSEDAK
410 420 430 440 450
EIMQHRFFAG IVWQHVYEKK LSPPFKPQVT SETDTRYFDE EFTAQMITIT
460 470 480
PPDQDDSMEC VDSERRPHFP QFSYSASGTA

Background

Function:

AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI3P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI3K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development. Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3. Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation. Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation. Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity. Phosphorylation of BAD stimulates its pro-apoptotic activity. Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53.

Post-translational Modifications:

O-GlcNAcylation at Thr-305 and Thr-312 inhibits activating phosphorylation at Thr-308 via disrupting the interaction between AKT1 and PDPK1. O-GlcNAcylation at Ser-473 also probably interferes with phosphorylation at this site.Phosphorylation on Thr-308, Ser-473 and Tyr-474 is required for full activity. Activated TNK2 phosphorylates it on Tyr-176 resulting in its binding to the anionic plasma membrane phospholipid PA. This phosphorylated form localizes to the cell membrane, where it is targeted by PDPK1 and PDPK2 for further phosphorylations on Thr-308 and Ser-473 leading to its activation. Ser-473 phosphorylation by mTORC2 favors Thr-308 phosphorylation by PDPK1. Phosphorylated at Thr-308 and Ser-473 by IKBKE and TBK1. Ser-473 phosphorylation is enhanced by interaction with AGAP2 isoform 2 (PIKE-A). Ser-473 phosphorylation is enhanced in focal cortical dysplasias with Taylor-type balloon cells. Ser-473 phosphorylation is enhanced by signaling through activated FLT3. Dephosphorylated at Thr-308 and Ser-473 by PP2A phosphatase. The phosphorylated form of PPP2R5B is required for bridging AKT1 with PP2A phosphatase. Ser-473 is dephosphorylated by CPPED1, leading to termination of signaling.Ubiquitinated via 'Lys-48'-linked polyubiquitination by ZNRF1, leading to its degradation by the proteasome (By similarity). Ubiquitinated; undergoes both 'Lys-48'- and 'Lys-63'-linked polyubiquitination. TRAF6-induced 'Lys-63'-linked AKT1 ubiquitination is critical for phosphorylation and activation. When ubiquitinated, it translocates to the plasma membrane, where it becomes phosphorylated. When fully phosphorylated and translocated into the nucleus, undergoes 'Lys-48'-polyubiquitination catalyzed by TTC3, leading to its degradation by the proteasome. Also ubiquitinated by TRIM13 leading to its proteasomal degradation. Phosphorylated, undergoes 'Lys-48'-linked polyubiquitination preferentially at Lys-284 catalyzed by MUL1, leading to its proteasomal degradation.Acetylated on Lys-14 and Lys-20 by the histone acetyltransferases EP300 and KAT2B. Acetylation results in reduced phosphorylation and inhibition of activity. Deacetylated at Lys-14 and Lys-20 by SIRT1. SIRT1-mediated deacetylation relieves the inhibition.

Subcellular Location:

Nucleus;Plasma membrane;

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Interacts with BTBD10 (By similarity). Interacts with KCTD20 (By similarity). Interacts (via the C-terminus) with CCDC88A (via its C-terminus). Interacts with GRB10; the interaction leads to GRB10 phosphorylation thus promoting YWHAE-binding (By similarity). Interacts with AGAP2 (isoform 2/PIKE-A); the interaction occurs in the presence of guanine nucleotides. Interacts with AKTIP. Interacts (via PH domain) with MTCP1, TCL1A AND TCL1B. Interacts with CDKN1B; the interaction phosphorylates CDKN1B promoting 14-3-3 binding and cell-cycle progression. Interacts with MAP3K5 and TRAF6. Interacts with BAD, PPP2R5B, STK3 and STK4. Interacts (via PH domain) with SIRT1. Interacts with SRPK2 in a phosphorylation-dependent manner. Interacts with RAF1. Interacts with TRIM13; the interaction ubiquitinates AKT1 leading to its proteasomal degradation. Interacts with TNK2 and CLK2. Interacts (via the C-terminus) with THEM4 (via its C-terminus). Interacts with and phosphorylated by PDPK1. Interacts with PA2G4 (By similarity). Interacts with KIF14; the interaction is detected in the plasma membrane upon INS stimulation and promotes AKT1 phosphorylation (PubMed:24784001). Interacts with FAM83B; activates the PI3K/AKT signaling cascade (PubMed:23676467). Interacts with WDFY2 (via WD repeats 1-3) (PubMed:16792529). Forms a complex with WDFY2 and FOXO1 (By similarity). Interacts with FAM168A (PubMed:23251525). Interacts with SYAP1 (via phosphorylated form and BSD domain); this interaction is enhanced in a mTORC2-mediated manner in response to epidermal growth factor (EGF) stimulation and activates AKT1 (PubMed:23300339).

Similarity:

Binding of the PH domain to phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) following phosphatidylinositol 3-kinase alpha (PIK3CA) activity results in its targeting to the plasma membrane. The PH domain mediates interaction with TNK2 and Tyr-176 is also essential for this interaction.The AGC-kinase C-terminal mediates interaction with THEM4.Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. RAC subfamily.

Research Fields

Research Fields:

· Cellular Processes > Cellular community - eukaryotes > Focal adhesion.(View pathway)
· Cellular Processes > Cell growth and death > Apoptosis.(View pathway)
· Cellular Processes > Transport and catabolism > Autophagy - animal.(View pathway)
· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells.(View pathway)
· Cellular Processes > Cell growth and death > Cellular senescence.(View pathway)
· Environmental Information Processing > Signal transduction > TNF signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > MAPK signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > ErbB signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > FoxO signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > mTOR signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Apelin signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > cGMP-PKG signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Ras signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > AMPK signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Rap1 signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Phospholipase D signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > cAMP signaling pathway.(View pathway)
· Human Diseases > Cancers: Specific types > Pancreatic cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Renal cell carcinoma.(View pathway)
· Human Diseases > Cancers: Overview > Pathways in cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Gastric cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Non-small cell lung cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Glioma.(View pathway)
· Human Diseases > Cancers: Specific types > Colorectal cancer.(View pathway)
· Human Diseases > Cancers: Overview > Proteoglycans in cancer.
· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.(View pathway)
· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.(View pathway)
· Human Diseases > Cancers: Specific types > Endometrial cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Breast cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.(View pathway)
· Human Diseases > Cancers: Specific types > Small cell lung cancer.(View pathway)
· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.
· Human Diseases > Cancers: Overview > Central carbon metabolism in cancer.(View pathway)
· Human Diseases > Cancers: Overview > Choline metabolism in cancer.(View pathway)
· Human Diseases > Infectious diseases: Viral > Hepatitis C.
· Human Diseases > Infectious diseases: Viral > Measles.
· Human Diseases > Infectious diseases: Viral > Hepatitis B.
· Human Diseases > Cancers: Specific types > Melanoma.(View pathway)
· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.
· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).
· Human Diseases > Drug resistance: Antineoplastic > EGFR tyrosine kinase inhibitor resistance.
· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.
· Human Diseases > Infectious diseases: Viral > Influenza A.
· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.
· Human Diseases > Drug resistance: Antineoplastic > Platinum drug resistance.
· Human Diseases > Infectious diseases: Viral > HTLV-I infection.
· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).
· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.
· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.
· Human Diseases > Cancers: Specific types > Prostate cancer.(View pathway)
· Organismal Systems > Immune system > Toll-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > Platelet activation.(View pathway)
· Organismal Systems > Immune system > T cell receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > Fc epsilon RI signaling pathway.(View pathway)
· Organismal Systems > Immune system > Fc gamma R-mediated phagocytosis.(View pathway)
· Organismal Systems > Endocrine system > Progesterone-mediated oocyte maturation.
· Organismal Systems > Endocrine system > Relaxin signaling pathway.
· Organismal Systems > Digestive system > Carbohydrate digestion and absorption.
· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.(View pathway)
· Organismal Systems > Circulatory system > Adrenergic signaling in cardiomyocytes.(View pathway)
· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.
· Organismal Systems > Endocrine system > Insulin signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Regulation of lipolysis in adipocytes.
· Organismal Systems > Endocrine system > Prolactin signaling pathway.(View pathway)
· Organismal Systems > Nervous system > Neurotrophin signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Glucagon signaling pathway.
· Organismal Systems > Nervous system > Dopaminergic synapse.
· Organismal Systems > Development > Osteoclast differentiation.(View pathway)
· Organismal Systems > Aging > Longevity regulating pathway.(View pathway)
· Organismal Systems > Nervous system > Cholinergic synapse.
· Organismal Systems > Aging > Longevity regulating pathway - multiple species.(View pathway)
· Organismal Systems > Immune system > Chemokine signaling pathway.(View pathway)
· Organismal Systems > Immune system > B cell receptor signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Estrogen signaling pathway.(View pathway)

This image is a courtesy of anonymous review.
Western blot analysis of Phospho-Akt(Ser473) Antibody expression in Various cells lysates.
Western blot analysis on 293 cell lysate using Phospho-Akt(Ser473) Antibody.The lane on the left is treated with the antigen-specific peptide.
AF0016 at 1/200 staining human lung cancer tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF0016 at 1/200 staining human lung cancer tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
Phospho-Akt(Ser473) Antibody for IHC in human brain tissue
AF0016 staining 293 by IF/ICC. The sample were fixed with PFA and permeabilized in 0.1% Triton X-100,then blocked in 10% serum for 45 minutes at 25°C. The primary antibody was diluted at 1/200 and incubated with the sample for 1 hour at 37°C. An Alexa Fluor 594 conjugated goat anti-rabbit IgG (H+L) Ab, diluted at 1/600, was used as the secondary antibody.
AF0016 staining 293 cells by IF/ICC. The sample were fixed with PFA and permeabilized in 0.1% Triton X-100,then blocked in 10% serum for 45 minutes at 25°C. The primary antibody was diluted at 1/200 and incubated with the sample for 1 hour at 37°C. An Alexa Fluor 594 conjugated goat anti-rabbit IgG (H+L) antibody(Cat.# S0006), diluted at 1/600, was used as secondary antibody.
ELISA analysis of AF0016 showing specificity to Phospho-Akt(Ser473) peptide. Peptides concentration: 1ug/ml.
P-peptide: phospho-peptide; N-peptide: non-phospho-peptide.

Reference Citations:

1). Yao J et al. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma. Int Immunopharmacol 2016 Mar;32:24-31 (PubMed: 26780233)

Application: WB    Species: mouse;    Sample: mouse;

Fig. 9. Chrysin inhibits the phosphorylation of Akt and ERK1/2. The levels of Akt, p-Akt, ERK1/2 and p-ERK1/2 in protein extracts from lung tissues were analyzed with Western blot (A). The bar graph represents percent phosphorylation level compared with the control group (B and C). Densitometric data are expressed as mean ± SEM (#p b 0.05 vs. control group; *p b 0.05 vs. OVA group, n = 6).


2). Liu Y et al. Fucoxanthin Activates Apoptosis via Inhibition of PI3K/Akt/mTOR Pathway and Suppresses Invasion and Migration by Restriction of p38-MMP-2/9 Pathway in Human Glioblastoma Cells. Neurochem Res 2016 Oct;41(10):2728-2751 (PubMed: 27394418)

Application: WB    Species: human;    Sample:Not available;

Fig. 4 Fucoxanthin promotes apoptosis via inhibition of PI3K/Akt/ mTOR signaling pathway in glioblastoma cells. a Cell lysates were electrophoresed and Akt, p-Akt, mTOR and p-mTOR proteins were detected by their respective specific antibodies in indicated concentrations


3). Yao J et al. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma. Int Immunopharmacol 2016 Mar;32:24-31 (PubMed: 26780233)

4). He Y et al. Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway. Exp Cell Res 2015 Nov 15;339(1):122-34 (PubMed: 26476374)

Application: WB 1/1000    Species: rat;    Sample: rat;

Fig. 7. Effect of quercetin on TrkA/AKT pathway signaling in PASMCs. (A) The expression levels of p-TrkA/TrkA and p-AKT/AKT were measured by Western blotting in PASMCs in hypoxia and treated with increasing concentrations of quercetin for 24 h. (B) Results were quantified by densitometry analysis of the bands form (A) and then normalization to GAPDH protein. (C) Effects of NGF, GW441756, and quercetin on the expression of p-TrkA/TrkA and p-AKT/AKT in PASMCs in hypoxia. (D) Densitometric quantification of the bands were shown. (E) The effect of quercetin on PASMCs migration ability under the hypoxia condition treated with or without NGF (50 μg/L). (F) Quantification of the number of cells migrating through the polycarbonate membrane of average of 3 independent experiments. (G) Quantification of the Flow cytometry analysis results to confirm the effects of quercetin on PASMCs apoptosis and (H) cell cycle under the hypoxia condition treated with NGF (50 ug/L). *Po0.05, **Po0.01 compared with control; #Po0.05, ##Po0.01 compared with hypoxia and quercetin treated groups; &Po0.05, &&Po0.01 compared with NGF treated PASMCs.


5). Xie XC et al. Relaxin Attenuates Contrast-Induced Human Proximal Tubular Epithelial Cell Apoptosis by Activation of the PI3K/Akt Signaling Pathway In Vitro. Biomed Res Int 2017;2017:2869405 (PubMed: 28540295)

Application: WB    Species: human;    Sample:Not available;

Figure 5: Effects of RLX on the expression of pAkt and apoptosis proteins


6). Ning C et al. Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor VS-5584 in preclinical models of pancreatic cancer. Oncotarget 2017 Jul 4;8(27):44295-44311 (PubMed: 28574828)

Application: WB    Species: human;    Sample:Not available;

Figure 5: BVD-523 synergizes with VS-5584 in AML cells. (A) BxPC-3, MIAPaCa-2, and CFPAC-1 cells were treated with vehicle control or variable concentrations of BVD-523 and VS-5584, alone or in combination, for 48 h. Viable cells were measured by MTT assays. Standard isobologram analyses of the antitumor interactions are shown. The IC50 values of each drug are plotted on the axes; the solid line represents the additive effect, while the points represent the concentrations of each drug resulting in 50% inhibition of proliferation. Points falling below the line indicate synergism whereas those above the line indicate antagonism. (B) HPAC cells were treated with vehicle control, VS, BVD-523 (BVD), or VS plus BVD for 48 h. Cells were fxed with 80% ice-cold ethanol and stained with PI for cell cycle analysis. The percentage of cells with sub-G1 DNA content are graphed as means of triplicates ± SEM from one representative experiment. ***indicates p < 0.001; combined treatment compared to individual treatments and vehicle control. Combination index (CI) values were calculated using CompuSyn software. (C) CI vs. Fa plot (combination index vs. fraction affected) for the cell death data is presented. (D) HPAC cells were treated with vehicle control or the indicated drugs for 48 h. Whole cell lysates were subjected to Western blotting and probed with the indicated antibody. The fold changes for the densitometry measurements, normalized to β-actin and then compared to no drug treatment control, are indicated.


7). Wang F et al. Angelicin inhibits liver cancer growth in vitro and in vivo. Mol Med Rep 2017 Oct;16(4):5441-5449 (PubMed: 28849216)

Application: WB    Species: human;    Sample:Not available;

Treatment with angelicin alters the protein expression levels of PI3K, p-Akt and total Akt in HepG2 and Huh-7 cells in vitro. (A) Representative blots demonstrating PI3K, p-Akt and total Akt protein expression levels in HepG2 and Huh-7 cells, following treatment with various concentrations of angelicin. (B) PI3K blots were semi-quantified using densitometry analysis of the protein bands and normalized to GAPDH. (C) p-Akt/Akt blots were semi-quantified using densitometry analysis of the protein bands. (D) Effects of LY294002 on angelicin-induced apoptosis. Cells were treated with the PI3K inhibitor LY294002 (3 mM) for 1 h prior to treatment with angelicin. The percentage of apoptotic cells following treatment with angelicin in the presence or absence of LY294002 was assessed using Annexin V-fluorescein isothiocyanate/propidium iodide staining and flow cytometry. Data are expressed as the mean ± standard deviation of 3 independent experiments.


8). Yang M et al. Estrogen receptor β exhibited anti-tumor effects on osteosarcoma cells by regulating integrin, IAP, NF-kB/BCL-2 and PI3K/Akt signal pathway. J Bone Oncol 2017 Sep 28;9:15-20 (PubMed: 29071206)

Application: WB 1/2000    Species: human;    Sample:Not available;

Fig 5. The expression of p-p65, p-AKT and Bcl-2 (protein level) in U2-OS cells treated by LY294002 or/and Estrogen receptor β (ERβ) siRNA in the presence of 10-10 M E2.


9). Chai L et al. Biological functions of lung cancer cells are suppressed in co-culture with mesenchymal stem cells isolated from umbilical cord. Exp Ther Med 2018 Jan;15(1):1076-1080 (PubMed: 29399109)

10). Geng S et al. P53 modulates hepatic insulin sensitivity through NF-κB and p38/ERK MAPK pathways. Biochem Biophys Res Commun 2018 Jan 15;495(3):2139-2144 (PubMed: 29258820)

11). Li C et al. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int 2018 Apr 16 (PubMed: 29663649)

12). Huang Y et al. LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J Exp Clin Cancer Res 2017 Dec 28;36(1):194 (PubMed: 29282102)

13). Su Y et al. Targeting PI3K, mTOR, ERK, and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo. Biochem Pharmacol 2018 Feb;148:13-26 (PubMed: 29208365)

14). Liu Y et al. Increased autophagy in EOC re-ascites cells can inhibit cell death and promote drug resistance. Cell Death Dis 2018 Apr 1;9(4):419 (PubMed: 29549251)

15). Huang YX et al. Ovostatin 2 knockdown significantly inhibits the growth, migration, and tumorigenicity of cutaneous malignant melanoma cells. PLoS One 2018 Apr 23;13(4):e0195610 (PubMed: 29684087)

16). Li C et al. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int 2018 Apr 16 (PubMed: 29663649)

17). Li C et al. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-κB signaling. Cell Biol Int 2018 Apr 16 (PubMed: 29663649)

18). Wang W et al. Umbilical cord‑derived mesenchymal stem cells can inhibit the biological functions of melanoma A375 cells. Oncol Rep 2018 Jul;40(1):511-517 (PubMed: 29767256)

19). Liu Y et al. Oligo-Porphyran Ameliorates Neurobehavioral Deficits in Parkinsonian Mice by Regulating the PI3K/Akt/Bcl-2 Pathway. Mar Drugs 2018 Mar 6;16(3) (PubMed: 29509717)

20). Wei W et al. Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy. Sci Rep 2018 Jan 8;8(1):9 (PubMed: 29311680)

21). Li J et al. The Aqueous Extract of Gynura divaricata (L.) DC. Improves Glucose and Lipid Metabolism and Ameliorates Type 2 Diabetes Mellitus. Evid Based Complement Alternat Med 2018 Jan 23;2018:8686297 (PubMed: 29599810)

22). Huikun Xu et al. Chemerin promotes the viability and migration of human placental microvascular endothelial cells and activates MAPK/AKT signaling . Int J Clin Exp Med 2018;11(2):721-727

23). Ge H et al. DcR3 induces proliferation, migration, invasion, and EMT in gastric cancer cells via the PI3K/AKT/GSK-3β/β-catenin signaling pathway. Onco Targets Ther 2018 Jul 19;11:4177-4187 (PubMed: 30050309)

24). Feng X et al. CXCL5, the upregulated chemokine in patients with uterine cervix cancer, in vivo and in vitro contributes to oncogenic potential of Hela uterine cervix cancer cells. Biomed Pharmacother 2018 Nov;107:1496-1504 (PubMed: 30257367)

25). Guo Z et al. MAP kinase-interacting serine/threonine kinase 2 promotes proliferation, metastasis, and predicts poor prognosis in non-small cell lung cancer. Sci Rep 2017 Sep 6;7(1):10612 (PubMed: 28878291)

Application: WB    Species: human;    Sample:Not available;

(b) Western bolt shown that inhibited MEK, both decrease MNK2 expression and eIF4E phosphorylation. Inhibited AKT, decreased MNK2 and eIF4E, 4EBP1 phosphorylation.


26). Yu G et al. The protective effect of low-energy shock wave on testicular ischemia-reperfusion injury is mediated by the PI3K/AKT/NRF2 pathway. Life Sci 2018 Oct 12 (PubMed: 30321543)

27). Duan J et al. DINP aggravates autoimmune thyroid disease through activation of the Akt/mTOR pathway and suppression of autophagy in Wistar rats. Environ Pollut 2018 Oct 30;245:316-324 (PubMed: 30447474)

Review: 这个抗体wb的稀释比可以做到1/4000,效果非常好,条带单一。

Anonymous | 2017-10-16


Review: Staining of mouse embryonic stem cells. Staining is very strong so high dilution is needed at 1:1000 or even more for cell culture.

Anonymous | 2016-12-11


Total 2 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
captcha
Catalog Number :

AF0016-BP

Price/Size :

$200/1mg.
Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 1 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.