Price Size
$150 50ul
$250 100ul
$350 200ul
$1200 1ml

Same day delivery

For pricing and ordering contact:

local distributors
  • Product Name
    GAPDH Antibody
  • Catalog No.
  • RRID
  • Source
  • Application
  • Reactivity
    Human, Mouse, Rat, Pig, Zebrafish, Monkey
  • Prediction
    Pig, Zebrafish, Horse, Rabbit, Dog, Chicken, Xenopus
  • UniProt
  • Mol.Wt
  • Concentration
  • Browse similar products>>

Related Products

Product Information

Alternative Names:Expand▼

GAPDH, A1 40 kd subunit, Activator 1 40 kd subunit, G3PD, GAPD, G3pdh, Rfc40, Rf-c 40 kd subunit


WB: 1:5000-1:50000, IF/ICC 1:100-1:500, ELISA(peptide) 1:20000-1:40000
*The optimal dilutions should be determined by the end user.


Human, Mouse, Rat, Pig, Zebrafish, Monkey

Predicted Reactivity:

Pig, Zebrafish, Horse, Rabbit, Dog, Chicken, Xenopus






The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).


GAPDH antibody detects endogenous levels of total GAPDH protein from human and monkey.Is unsuitable for MOUSE and RAT,not yet tested in other species.


Please cite this product as: Affinity Biosciences Cat# AF0911, RRID:AB_2839422.





Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.

Immunogen Information in 3D


A synthesized peptide derived from human GAPDH.


>>Visit The Human Protein Atlas

Gene ID:

Gene Name:


Molecular Weight:

Observed Mol.Wt.: 37kD.
Predicted Mol.Wt.: 36kDa(Calculated)..

Subcellular Location:

Cytoplasm > cytosol. Nucleus. Cytoplasm > perinuclear region. Membrane. Translocates to the nucleus following S-nitrosylation and interaction with SIAH1, which contains a nuclear localization signal (By similarity). Postnuclear and Perinuclear regions.


Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) is well known as one of the key enzymes involved in glycolysis. GAPDH is constitutively abundant expressed in almost cell types at high levels, therefore antibodies against GAPDH are useful as loading controls for Western Blotting. Some pathology factors, such as hypoxia and diabetes, increased or decreased GAPDH expression in certain cell types.


Research Background


Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.

Post-translational Modifications:

S-nitrosylation of Cys-152 leads to interaction with SIAH1, followed by translocation to the nucleus (By similarity). S-nitrosylation of Cys-247 is induced by interferon-gamma and LDL(ox) implicating the iNOS-S100A8/9 transnitrosylase complex and seems to prevent interaction with phosphorylated RPL13A and to interfere with GAIT complex activity.


Sulfhydration at Cys-152 increases catalytic activity.

Oxidative stress can promote the formation of high molecular weight disulfide-linked GAPDH aggregates, through a process called nucleocytoplasmic coagulation. Such aggregates can be observed in vivo in the affected tissues of patients with Alzheimer disease or alcoholic liver cirrhosis, or in cell cultures during necrosis. Oxidation at Met-46 may play a pivotal role in the formation of these insoluble structures. This modification has been detected in vitro following treatment with free radical donor (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide. It has been proposed to destabilize nearby residues, increasing the likelihood of secondary oxidative damages, including oxidation of Tyr-45 and Met-105. This cascade of oxidations may augment GAPDH misfolding, leading to intermolecular disulfide cross-linking and aggregation.

Succination of Cys-152 and Cys-247 by the Krebs cycle intermediate fumarate, which leads to S-(2-succinyl)cysteine residues, inhibits glyceraldehyde-3-phosphate dehydrogenase activity. Fumarate concentration as well as succination of cysteine residues in GAPDH is significantly increased in muscle of diabetic mammals. It was proposed that the S-(2-succinyl)cysteine chemical modification may be a useful biomarker of mitochondrial and oxidative stress in diabetes and that succination of GAPDH and other thiol proteins by fumarate may contribute to the metabolic changes underlying the development of diabetes complications.

Subcellular Location:

Cytoplasm>Cytosol. Nucleus. Cytoplasm>Perinuclear region. Membrane. Cytoplasm>Cytoskeleton.
Note: Translocates to the nucleus following S-nitrosylation and interaction with SIAH1, which contains a nuclear localization signal (By similarity). Postnuclear and Perinuclear regions.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Homotetramer. Interacts with TPPP; the interaction is direct. Interacts (when S-nitrosylated) with SIAH1; leading to nuclear translocation. Interacts with RILPL1/GOSPEL, leading to prevent the interaction between GAPDH and SIAH1 and prevent nuclear translocation. Interacts with CHP1; the interaction increases the binding of CHP1 with microtubules. Associates with microtubules (By similarity). Interacts with EIF1AD, USP25, PRKCI and WARS1. Interacts with phosphorylated RPL13A; inhibited by oxidatively-modified low-densitity lipoprotein (LDL(ox)). Component of the GAIT complex. Interacts with FKBP6; leading to inhibit GAPDH catalytic activity.


The [IL]-x-C-x-x-[DE] motif is a proposed target motif for cysteine S-nitrosylation mediated by the iNOS-S100A8/A9 transnitrosylase complex.

Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.

Research Fields

Research Fields:

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.(View pathway)
· Human Diseases > Neurodegenerative diseases > Alzheimer's disease.
· Metabolism > Carbohydrate metabolism > Glycolysis / Gluconeogenesis.
· Metabolism > Global and overview maps > Metabolic pathways.
· Metabolism > Global and overview maps > Carbon metabolism.
· Metabolism > Global and overview maps > Biosynthesis of amino acids.

Reference Citations:

1). Zhuo J et al. Patchouli alcohol protects against chronic unpredictable mild stress-induced depressant-like behavior through inhibiting excessive autophagy via activation of mTOR signaling pathway. Biomed Pharmacother 2020 Mar 31;127:110115 (PubMed: 32244196) [IF=4.545]

2). Zhang L et al. Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomed Pharmacother 2017 Jun;90:222-228 (PubMed: 28363167) [IF=4.545]

Application: WB    Species:human;    Sample:Not available

Fig. 3. Effects of ROS and ERK on CypD expression. Cells were treated with emodin in the absence or presence of 5mM CsA or 10 ng/mL EGF for 48 h, or 5 mM NAC for 6 h. Protein expression was determined by western blots. (A) CypD expression in the absence or presence of CsA. (B) p-ERK expression induced by emodin. (C) CypD expression in the absence or presence of EGF. (D) CypD expression in the absence or presence of NAC. (E) Determination of emodin-induced cytotoxicity activity in the absence or presence of EGF or NAC by MTT assay. Values are expressed as the means  SD; n = 3, * p < 0.05 versus control.

3). Zhao H et al. CCL17-CCR4 axis promotes metastasis via ERK/MMP13 pathway in bladder cancer. J Cell Biochem 2018 Sep 19 (PubMed: 30230587) [IF=4.237]

4). Liu M et al. Berberine Promotes OATP1B1 Expression and Rosuvastatin Uptake by Inducing Nuclear Translocation of FXR and LXRα. Front Pharmacol 2020 Mar 27;11:375 (PubMed: 32292349) [IF=4.225]

5). Yang MD;Zhou WJ;Chen XL;Chen J;Ji Q;Li Q;Wang WH;Su SB; et al. Therapeutic Effect and Mechanism of Bushen-Jianpi-Jiedu Decoction Combined with Chemotherapeutic Drugs on Postoperative Colorectal Cancer. Front Pharmacol 2021 Mar 22;12:524663. (PubMed: 33828479) [IF=4.225]

6). Wang J;Yu Z;Wang J;Shen Y;Qiu J;Zhuang Z; et al. LncRNA NUTM2A‐AS1 positively modulates TET1 and HIF‐1A to enhance gastric cancer tumorigenesis and drug resistance by sponging miR‐376a. Cancer Med 2020 Oct 22. (PubMed: 33089970) [IF=3.491]

7). Ganggang Jiang et al. p62 promotes proliferation, apoptosis‑resistance and invasion of prostate cancer cells through the Keap1/Nrf2/ARE axis. ONCOL REP 2020 Feb 28; [IF=3.417]

8). Wang HF;Ma JX;Shang QL;An JB;Chen HT; et al. Crocetin inhibits the proliferation, migration and TGF-β 2-induced epithelial-mesenchymal transition of retinal pigment epithelial cells . Eur J Pharmacol 2017 Nov 15;815:391-398. (PubMed: 28970011) [IF=3.263]

9). Wang HF;Ma JX;Shang QL;An JB;Chen HT; et al. Crocetin inhibits the proliferation, migration and TGF-β 2-induced epithelial-mesenchymal transition of retinal pigment epithelial cells . Eur J Pharmacol 2017 Nov 15;815:391-398. (PubMed: 28970011) [IF=3.263]

Application: WB    Species:human;    Sample:ARPE-19

Figure 4. Crocetin inhibits TGF-β2-induced EMT. After 1 h of pretreatment with crocetin, ARPE-19 cells used for EMT assay were stimulated with or without recombinant human TGF-β2 for up to 24 or 48 h. (A) Phase contrast photomicrographs of confluent cultures of cells were captured after treatment for 48 h. Scale bar: 200 μm. (B) Western blot analysis levels of of ZO-1, E-cadherin, Vimentin, α-SMA and the housekeeping protein GAPDH in the lysates of ARPE-19 cells after treatment for 48 h. *P< 0.05, **P< 0.01, ***P< 0.001. The data are presented as the mean ± S.D. (n = 3/group).

10). Jiang M;Lash GE;Zeng S;Liu F;Han M;Long Y;Cai M;Hou H;Ning F;Hu Y;Yang H; et al. Differential expression of serum proteins before 20 weeks gestation in women with hypertensive disorders of pregnancy: A potential role for SH3BGRL3. Placenta 2020 Nov 14;104:20-30. (PubMed: 33217630) [IF=3.177]

11). Zhang L;Xia H;Xia K;Liu X;Zhang X;Dai J;Zeng Z;Jia Y; et al. Selenium Regulation of the Immune Function of Dendritic Cells in Mice Through the ERK, Akt and RhoA/ROCK Pathways. Biol Trace Elem Res 2020 Oct 26. (PubMed: 33107016)

12). Liu Q et al. Cannabinoid receptor 2 activation decreases severity of cyclophosphamide-induced cystitis via regulating autophagy. Neurourol Urodyn 2019 Nov 14 (PubMed: 31729056)

13). Xia H;Zhang L;Dai J;Liu X;Zhang X;Zeng Z;Jia Y; et al. Effect of Selenium and Peroxynitrite on Immune Function of Immature Dendritic Cells in Humans. Med Sci Monit 2021 Mar 8;27:e929004. (PubMed: 33684094)

14). Xian-Kui H et al. P38 Inhibition Prevents Herpes Simplex Virus Type 1 (HSV-1) Infection in Cultured Corneal Keratocytes. Curr Eye Res 2020 Apr 14:1-10 (PubMed: 32250648)

15). Zhang L;Dai J;Zeng Z;Jia Y; et al. Nitric oxide induces HepG2 cell death via extracellular signal-regulated protein kinase activation by regulating acid sphingomyelinase. Mol Biol Rep 2020 Oct;47(10):8353-8359. (PubMed: 33025504)

16). Xia H;Zhang L;Dai J;Liu X;Zhang X;Zeng Z;Jia Y; et al. Effect of Selenium and Peroxynitrite on Immune Function of Immature Dendritic Cells in Humans. Med Sci Monit 2021 Mar 8;27:e929004. (PubMed: 33684094)

17). et al. A novel method to improve sow reproductive performance: Combination of pre-weaning immunization against inhibin and post-insemination hCG treatment.

18). et al. Activation of the α2A adrenoceptor in microglia promotes LPS-induced TNF-α production and cognitive impairment in mice.

No comment
Total 0 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
Catalog Number :

(Blocking peptide available as AF0911-BP)

Price/Size :

Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 10 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

High similarity Medium similarity Low similarity No similarity
IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.

To Top