Price Size
$150 50ul
$250 100ul
$350 200ul
$1200 1ml

Same day delivery

Contact distributor
  • Product Name
    beta Actin Antibody
  • Catalog No.
    AF7018
  • Source
    Rabbit
  • Application
    WB,IHC,IF/ICC
  • Reactivity
    Hm,Ms,Rt,Pg,Zf,Dg,Mk,Fs
  • UniProt
  • Mol.Wt.
    43kDa
  • Concentration
    1mg/ml
  • Browse similar products>>

Product Information

Alternative Names:Expand▼

ACTB; Actin; cytoplasmic 1; Beta-actin; Beta actin; BRWS1; β actin;b actin; Actin beta; Beta cytoskeletal actin; PS1TP5-binding protein 1; PS1TP5BP1;

Applications:

WB 1:3000-1:20000, IHC 1:200, IF/ICC 1:100-1:500, ELISA(peptide) 1:20000-1:40000

Reactivity:

Human,Mouse,Rat,Pig,Zebrafish,Dog,Monkey,Fish

Source:

Rabbit

Clonality:

Polyclonal

Purification:

The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).

Specificity:

Beta actin antibody detects endogenous levels of total Beta actin.

Format:

Liquid

Concentration:

1mg/ml

Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

Immunogen Information

Immunogen:

A synthesized peptide derived from human Beta actin.

Uniprot:



>>Visit The Human Protein Atlas

Gene id:

Molecular Weight:

Observed Mol.Wt.: 43kDa.
Predicted Mol.Wt.: 42kDa.

Subcellular Location:

Cytoplasm > cytoskeleton. Localized in cytoplasmic mRNP granules containing untranslated mRNAs.

Description:

Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility.

Sequence:
        10         20         30         40         50
MDDDIAALVV DNGSGMCKAG FAGDDAPRAV FPSIVGRPRH QGVMVGMGQK
60 70 80 90 100
DSYVGDEAQS KRGILTLKYP IEHGIVTNWD DMEKIWHHTF YNELRVAPEE
110 120 130 140 150
HPVLLTEAPL NPKANREKMT QIMFETFNTP AMYVAIQAVL SLYASGRTTG
160 170 180 190 200
IVMDSGDGVT HTVPIYEGYA LPHAILRLDL AGRDLTDYLM KILTERGYSF
210 220 230 240 250
TTTAEREIVR DIKEKLCYVA LDFEQEMATA ASSSSLEKSY ELPDGQVITI
260 270 280 290 300
GNERFRCPEA LFQPSFLGME SCGIHETTFN SIMKCDVDIR KDLYANTVLS
310 320 330 340 350
GGTTMYPGIA DRMQKEITAL APSTMKIKII APPERKYSVW IGGSILASLS
360 370
TFQQMWISKQ EYDESGPSIV HRKCF

Background

Function:

Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.

Post-translational Modifications:

ISGylated.Oxidation of Met-44 and Met-47 by MICALs (MICAL1, MICAL2 or MICAL3) to form methionine sulfoxide promotes actin filament depolymerization. MICAL1 and MICAL2 produce the (R)-S-oxide form. The (R)-S-oxide form is reverted by MSRB1 and MSRB2, which promote actin repolymerization (By similarity).Monomethylation at Lys-84 (K84me1) regulates actin-myosin interaction and actomyosin-dependent processes. Demethylation by ALKBH4 is required for maintaining actomyosin dynamics supporting normal cleavage furrow ingression during cytokinesis and cell migration.(Microbial infection) Monomeric actin is cross-linked by V.cholerae toxins RtxA and VgrG1 in case of infection: bacterial toxins mediate the cross-link between Lys-50 of one monomer and Glu-270 of another actin monomer, resulting in formation of highly toxic actin oligomers that cause cell rounding (PubMed:19015515). The toxin can be highly efficient at very low concentrations by acting on formin homology family proteins: toxic actin oligomers bind with high affinity to formins and adversely affect both nucleation and elongation abilities of formins, causing their potent inhibition in both profilin-dependent and independent manners (PubMed:26228148).

Subcellular Location:

Cytoskeleton;

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Interacts with CPNE1 (via VWFA domain) and CPNE4 (via VWFA domain) (By similarity). Polymerization of globular actin (G-actin) leads to a structural filament (F-actin) in the form of a two-stranded helix. Each actin can bind to 4 others. Identified in a IGF2BP1-dependent mRNP granule complex containing untranslated mRNAs. Component of the BAF complex, which includes at least actin (ACTB), ARID1A, ARID1B/BAF250, SMARCA2, SMARCA4/BRG1, ACTL6A/BAF53, ACTL6B/BAF53B, SMARCE1/BAF57 SMARCC1/BAF155, SMARCC2/BAF170, SMARCB1/SNF5/INI1, and one or more of SMARCD1/BAF60A, SMARCD2/BAF60B, or SMARCD3/BAF60C. In muscle cells, the BAF complex also contains DPF3. Found in a complex with XPO6, Ran, ACTB and PFN1. Interacts with XPO6 and EMD. Interacts with ERBB2. Interacts with GCSAM. Interacts with TBC1D21 (By similarity). Interacts with DHX9 (via C-terminus); this interaction is direct and mediates the attachment to nuclear ribonucleoprotein complexes (PubMed:11687588).

Similarity:

Belongs to the actin family.

Research Fields

Research Fields:

· Cellular Processes > Transport and catabolism > Phagosome.(View pathway)
· Cellular Processes > Cellular community - eukaryotes > Focal adhesion.(View pathway)
· Cellular Processes > Cellular community - eukaryotes > Tight junction.(View pathway)
· Cellular Processes > Cell growth and death > Apoptosis.(View pathway)
· Cellular Processes > Cellular community - eukaryotes > Adherens junction.(View pathway)
· Cellular Processes > Cell motility > Regulation of actin cytoskeleton.(View pathway)
· Environmental Information Processing > Signal transduction > Hippo signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Rap1 signaling pathway.(View pathway)
· Human Diseases > Cancers: Overview > Proteoglycans in cancer.
· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.(View pathway)
· Human Diseases > Cardiovascular diseases > Arrhythmogenic right ventricular cardiomyopathy (ARVC).
· Human Diseases > Cardiovascular diseases > Dilated cardiomyopathy (DCM).
· Human Diseases > Infectious diseases: Bacterial > Pathogenic Escherichia coli infection.
· Human Diseases > Cardiovascular diseases > Hypertrophic cardiomyopathy (HCM).
· Human Diseases > Cardiovascular diseases > Viral myocarditis.
· Human Diseases > Infectious diseases: Bacterial > Salmonella infection.
· Human Diseases > Infectious diseases: Bacterial > Vibrio cholerae infection.
· Human Diseases > Infectious diseases: Bacterial > Shigellosis.
· Human Diseases > Infectious diseases: Viral > Influenza A.
· Human Diseases > Infectious diseases: Bacterial > Bacterial invasion of epithelial cells.
· Organismal Systems > Immune system > Platelet activation.(View pathway)
· Organismal Systems > Immune system > Leukocyte transendothelial migration.(View pathway)
· Organismal Systems > Digestive system > Gastric acid secretion.
· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Oxytocin signaling pathway.

Western blot analysis of extracts from various samples, using beta Actin Antibody. Lane 1: 3T3 treated with blocking peptide; Lane 2: 3T3; Lane 3: COS-7.
Western blot analysis of extracts of NIH/3T3 (1), Jurkat (2), rat brain (3), rat liver (4), PC12 (5) lysates,using Beta-actin Antibody
LPS enhanced the expression of CUL4A and NF-κB proteins in gastric cancer cells.
AF7018 at 1/100 staining Human prostate tissue by IHC-P. The sample was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The sample was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF7018 staining HEPG2 cells by ICC/IF. The sample were fixed with PFA and permeabilized in 0.1% Triton X-100,then blocked in 10% serum for 45 minutes at 25°C. The primary antibody was diluted at 1/200 and incubated with the sample for 1 hour at 37°C. An Alexa Fluor 594 conjugated goat anti-rabbit IgG (H+L) antibody(Cat.# S0006), diluted at 1/600 was used as secondary antibody.
AF7018 staining HEPG2 cells by IF/ICC. The sample were fixed with PFA and permeabilized in 0.1% Triton X-100,then blocked in 10% serum for 45 minutes at 25°C. The primary antibody was diluted at 1/200 and incubated with the sample for 1 hour at 37°C. An Alexa Fluor 594 conjugated goat anti-rabbit IgG (H+L) antibody(Cat.# S0006), diluted at 1/600 was used as secondary antibody.

Reference Citations:

1). Gao Y et al. TGF-β1 promotes bovine mammary fibroblast proliferation through the ERK 1/2 signalling pathway. Cell Biol Int 2016 Jul;40(7):750-60 (PubMed: 27063575)

Application: WB    Species:Not available;    Sample:Not available;


2). Han H et al. Lamotrigine attenuates cerebral ischemia-induced cognitive impairment and decreases β-amyloid and phosphorylated tau in the hippocampus in rats. Neuroreport 2015 Aug 19;26(12):723-7 (PubMed: 26164461)

Application: WB    Species: rat;    Sample: rat;

LTG decreased Aβ1–42 and phosphorylated tau protein levels in the ipsilateral hippocampus of MCAO rats. (a) Immunoblotting photographs of Aβ1–42, Tau-5, and AT8. (b–d) Quantitative analysis of immunoreactivity of Aβ1–42 (b), Tau-5 (c), and AT8 (d). (e) Immunofluorescence of the hippocampal CA1 zone for AT8. Scale bar=50 μm. *Means sham versus another group, *P<0.05, **P< 0.01, ***P<0.001; † LTG 20 versus vehicle, † P<0.05, †††P<0.001; ‡ LTG 40 versus vehicle, ‡‡P< 0.01, ‡‡‡P


3). Feng Y et al. Neuroprotective effects of resveratrol against traumatic brain injury in rats: Involvement of synaptic proteins and neuronal autophagy. Mol Med Rep 2016 Jun;13(6):5248-54 (PubMed: 27122047)

4). Li Z et al. The role of PGC-1α and MRP1 in lead-induced mitochondrial toxicity in testicular Sertoli cells. Toxicology 2016 Apr 29;355-356:39-48 (PubMed: 27236077)

Application: WB    Species: mouse;    Sample:Not available;

Fig. 6. Role of MRP1 on lead-induced mitochondrial toxicity. (A) Expression of MRP1 in the mitochondria of Sertoli cells with various concentrations of lead acetate. (B) Expression of MRP1 in the mitochondria of Sertoli cells with continuous time exposure to lead acetate (20mM). (C) Expression of MRP1 in the mitochondria of the TM4 cells and MRP1()TM4 cells. (D) Transport activity of MRP1 in the mitochondria of the TM4 cells and MRP1()TM4 cells. (E) The accumulation of lead in the mitochondria of TM4 cells and MRP1()TM4 cells. Data represent mean  SD of at least three independent experiments (*P < 0.05, **P < 0.01 vs. control).


5). Xiao X et al. The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Sci Rep 2016 Feb 23;6:21735 (PubMed: 26902416)

Application: WB    Species: human;    Sample: breast cancer;


6). Qi H et al. Histone Demethylase JMJD2A Inhibition Attenuates Neointimal Hyperplasia in the Carotid Arteries of Balloon-Injured Diabetic Rats via Transcriptional Silencing: Inflammatory Gene Expression in Vascular Smooth Muscle Cells. Cell Physiol Biochem 2015;37(2):719-34 (PubMed: 26356263)

Application: WB    Species:Not available;    Sample:Not available;


7). Cai W et al. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. Biomed Res Int 2017;2017:4391920 (PubMed: 28116308)

Application: WB    Species: human;    Sample:Not available;


8). Wan LY et al. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1. Biochem Biophys Res Commun 2015 Feb 6;457(2):125-32 (PubMed: 25446103)

Application: WB    Species:Not available;    Sample:Not available;


9). Wu M et al. Essential oils from Inula japonica and Angelicae dahuricae enhance sensitivity of MCF-7/ADR breast cancer cells to doxorubicin via multiple mechanisms. J Ethnopharmacol 2016 Mar 2;180:18-27 (PubMed: 26795076)

10). Zhou H et al. miR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Prolif 2017 Jun;50(3) (PubMed: 28217977)

Application: WB 1/800    Species: human;    Sample:Not available;

FIGURE 3  miR-506 down-regulated MDR1/P-gp expression in HCT116-OxR. A, The mRNA level of MDR1 was decreased after transfection with the miR-506 mimic of the relative chemoresistant genes as demonstrated by qRT-PCR. B, The protein level of MDR1 was decreased after transfection with the miR-506 mimic of the relative chemoresistant proteins as demonstrated by Western blot. C, Expression of P-gp detected by immunofluorescence staining.HCT116-OxR-miR-506 cells showed low levels of fluorescent staining of P-gp, whereas maximal staining of P-gp was observed in HCT116-OxR cells, readily distinguished from background. Zoom: 200×. *P<.05)


11). Gong J et al. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats. Front Pharmacol 2017 Feb 3;8:42 (PubMed: 28217099)

12). Gong Y et al. CUL4A promotes cell invasion in gastric cancer by activating the NF-κB signaling pathway. Biologics 2017 Apr 12;11:45-53 (PubMed: 28442889)

Application: WB    Species: human;    Sample: HGC27;

Figure 4 CUL4A and NF-κB were overexpressed in GC tissues. Notes: (A) Representative images of gastric tumor tissues showing concordant positive staining of CUL4A and NF-κB in the same sample (200×). (B) Western blot analysis of CUL4A and NF-κB expressions in three paired primary GC and adjacent noncancerous tissue samples. These three patients were all diagnosed stage III. (C) CUL4A expression scores and NF-κB expression scores in 50 GC samples revealed that CUL4A expression positively correlated with NF-κB expression via correlation analysis


13). Yi S et al. Tcf12, A Member of Basic Helix-Loop-Helix Transcription Factors, Mediates Bone Marrow Mesenchymal Stem Cell Osteogenic Differentiation In Vitro and In Vivo. Stem Cells 2017 Feb;35(2):386-397 (PubMed: 27574032)

Application: WB 1/10000    Species: mouse;    Sample:Not available;

Figure 5. Down regulation of Tcf12 accelerate and potentiate bone repair in vivo. (A‐B) Quantification of Alp activity at day 14 in U‐0126 and LDN‐193189 treated shTcf12 and scrambled groups.


14). Huang X et al. PDL1 And LDHA act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res 2017 Sep 15;36(1):129 (PubMed: 28915924)

15). Hu Y et al. Expression and clinical relevance of SPOPL in medulloblastoma. Oncol Lett 2017 Sep;14(3):3051-3056 (PubMed: 28928843)

Application: WB 1/1000    Species: human;    Sample:Not available;


16). Zhuoqi Liu et al. Effect of targeted mammalian sterile 20-like kinase 1 regulation on proliferation and apoptosis of SW480 colorectal cancer cells. Biomedical Research 2017 Jun 8;28(15)

17). Hui-Fang Wang et al. Crocetin inhibits the proliferation, migration and TGF-β 2-induced epithelial-mesenchymal transition of retinal pigment epithelial cells . EUR J PHARMACOL 2017 Nov;815:391-398

18). Li L et al. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway. Gene 2018 Jan 30;641:240-247 (PubMed: 29045821)

Application: WB 1/600    Species: human;    Sample:Not available;

(C) miR-93-5p overexpression suppressed and increased E-cadherin and N-cadherin expression, respectively. The opposite result was observed in response to miR-93-5p downregulation.


19). Li L et al. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway. Gene 2018 Jan 30;641:240-247 (PubMed: 29045821)

20). Wang HF et al. Crocetin inhibits the proliferation, migration and TGF-β2-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Eur J Pharmacol 2017 Nov 15;815:391-398 (PubMed: 28970011)

Application: WB 1/5000    Species: human;    Sample:Not available;

Figure 2. Crocetin induces cell cycle arrest and influences PCNA, p21, and p53 expression in RPE cells. (A) Cells were harvested after treatment with or without 50 and 100 μM crocetin for 24 h. DNA was stained with PI for flow cytometric analysis. The number of cells in G1 phase was significantly increased in the crocetin-treated group compared with that in the untreated group. (B) Cells were treated or without with 50, 100 and 200 μM crocetin for 48 h. Western blot analysis was used to evaluated the expression of PCNA, p21, p53 and the housekeeping protein β-actin. *P< 0.05 vs 0 μM crocetin, **P< 0.01 vs 0 μM crocetin. The data are presented as the mean ± S.D. (n = 3/group).


21). Wang X et al. Autophagy enhanced antitumor effect in K562 and K562/ADM cells using realgar transforming solution. Biomed Pharmacother 2018 Feb;98:252-264 (PubMed: 29272786)

22). Feng Y et al. Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats. Mol Med Rep 2017 Jul;16(1):654-660 (PubMed: 28560414)

23). Wu Z et al. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer. Biochem Biophys Res Commun 2018 Apr 6;498(3):495-501 (PubMed: 29526753)

24). Ren W et al. Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo. Exp Cell Res 2018 Jul 15;368(2):236-247 (PubMed: 29746817)

25). Cai Y et al. Diffusion Tensor Imaging Evaluation of Axonal/White Matter Remodeling in a Mouse Model of Diabetic Stroke Treated with Novel p38 MAPK Inhibitor, VCP979. J Biomed Nanotechnol 2018 Mar 1;14(3):585-593 (PubMed: 29663930)

26). Zheng L et al. Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 2018 Jun;77:53-70 (PubMed: 29559270)

27). Liu Y et al. Oligo-Porphyran Ameliorates Neurobehavioral Deficits in Parkinsonian Mice by Regulating the PI3K/Akt/Bcl-2 Pathway. Mar Drugs 2018 Mar 6;16(3) (PubMed: 29509717)

28). Zhu L et al. miR-199b-5p Regulates Immune-Mediated Allograft Rejection after Lung Transplantation Through the GSK3β and NF-κB Pathways. Inflammation 2018 Aug;41(4):1524-1535 (PubMed: 29779167)

29). Zhu L et al. miR-199b-5p Regulates Immune-Mediated Allograft Rejection after Lung Transplantation Through the GSK3β and NF-κB Pathways. Inflammation 2018 Aug;41(4):1524-1535 (PubMed: 29779167)

30). Li XH et al. Parthenolide attenuated bleomycin-induced pulmonary fibrosis via the NF-κB/Snail signaling pathway. Respir Res 2018 Jun 5;19(1):111 (PubMed: 29871641)

31). Huikun Xu et al. Chemerin promotes the viability and migration of human placental microvascular endothelial cells and activates MAPK/AKT signaling . Int J Clin Exp Med 2018;11(2):721-727

32). Bai N et al. circFBLIM1 act as a ceRNA to promote hepatocellular cancer progression by sponging miR-346. J Exp Clin Cancer Res 2018 Jul 27;37(1):172 (PubMed: 30053867)

33). Ge QD et al. Differential Expression of miRNAs in the Hippocampi of Offspring Rats Exposed to Fluorine Combined with Aluminum during the Embryonic Stage and into Adulthood. Biol Trace Elem Res 2018 Jul 22 (PubMed: 30033483)

34). Lv C et al. Long-Term DL-3-n-Butylphthalide Treatment Alleviates Cognitive Impairment Correlate With Improving Synaptic Plasticity in SAMP8 Mice. Front Aging Neurosci 2018 Jul 5;10:200 (PubMed: 30026693)

35). Yong Wang et al. The Role of YB1 in Renal Cell Carcinoma Cell Adhesion. Int J Med Sci 2018; 15(12):1304-1311

36). Yong Wang et al. The Role of YB1 in Renal Cell Carcinoma Cell Adhesion. Int J Med Sci 2018; 15(12):1304-1311

37). Wen-bo REN et al. Interferon-γ regulates cell malignant growth via the c-AbI/HDAC2 signaling pathway in mammary epithelial cells. J ZHEJIANG UNIV-SC B 2018 Aug

38). Wu CZ et al. HMGB1/RAGE axis mediates the apoptosis, invasion, autophagy, and angiogenesis of the renal cell carcinoma. Onco Targets Ther 2018 Aug 1;11:4501-4510 (PubMed: 30122942)

39). Chengjun Song et al. Sericin enhances the insulin‑PI3K/AKT signaling pathway in the liver of a type 2 diabetes rat model. EXP THER MED 2018;16(4):3345-3352

40). Keren Wu et al. Antitumor effect of ginsenoside Rg3 on gallbladder cancer by inducing endoplasmic reticulum stress‑mediated apoptosis in vitro and in vivo. ONCOL LETT 2018 Aug;0:0-0

41). Tian YM et al. Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats. Life Sci 2016 Apr 1;150:1-7 (PubMed: 26883978)

42). Zhang L et al. Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomed Pharmacother 2017 Jun;90:222-228 (PubMed: 28363167)

Application: WB    Species: human;    Sample:Not available;

Fig. 2. Effects of CsA on emodin-induced apoptosis. The cells were treated with emodin for 48 h in the presence or absence of CsA (5mM), then assays were performed. (A) Analysis of apoptosis by nuclear condensation. The Hoechst 33342 staining showed typical apoptotic morphology changes after emodin treatment. The images were acquired by inverted fluorescence microscopy. (B) Analysis of apoptosis by Annexin V/PI double-staining assay. (C) Determination of Cyto-C level in mitochondria and cytosol by western blots. b-actin and VDAC1 were used as internal control.


43). Zhang G et al. Acute stimulatory effect of tumor necrosis factor on the basolateral 50 pS K channels in the thick ascending limb of the rat kidney. Mol Med Rep 2018 Sep 10 (PubMed: 30221721)

44). Zhou J et al. Brusatol ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in rats: Involvement of NF-κB pathway and NLRP3 inflammasome. Int Immunopharmacol 2018 Sep 12;64:264-274 (PubMed: 30218953)

45). et al. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo.

46). Chen G et al. SOSTDC1 inhibits bone metastasis in non-small cell lung cancer and may serve as a clinical therapeutic target. Int J Mol Med 2018 Oct 10 (PubMed: 30320379)

47). Shang J et al. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol 2018 Nov 2 (PubMed: 30395908)

48). Zhang H et al. Crocetin inhibits PDGF-BB-induced proliferation and migration of retinal pigment epithelial cells. Eur J Pharmacol 2018 Nov 2 (PubMed: 30395849)

49). Zheng L et al. Selenium deficiency impaired structural integrity of the head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 2018 Nov;82:408-420 (PubMed: 30142391)

No comment
Total 0 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
captcha
Catalog Number :

AF7018-BP

Price/Size :

$200/1mg.
Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 1 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.