Price Size
$150 50ul
$250 100ul
$350 200ul
$1200 1ml

Same day delivery

Contact distributor
  • Product Name
    GAPDH Antibody
  • Catalog No.
    T0004
  • Source
    Mouse
  • Application
    WB,ELISA
  • Reactivity
    Hm,Ms,Rt,Pg,Zf,Bv,Sp,Rb,Gt,Gp,Dg,Mk,Hr,Ck,Pl,Ri,Fs
  • UniProt
  • Mol.Wt.
    34KD
  • Concentration
    1mg/ml
  • Browse similar products>>

Product Information

Alternative Names:Expand▼

GAPDH; A1 40 kd subunit; Activator 1 40 kd subunit; G3PD; GAPD; G3pdh; Rfc40; Rf-c 40 kd subunit;

Applications:

WB: 1:3000~1:10000, IHC: 1:200, IF/ICC: 1:200, ELISA(peptide) 1:20000-1:40000

Reactivity:

Human,Mouse,Rat,Pig,Zebrafish,Bovine,Sheep,Rabbit,Goat,Guinea pig,Dog,Monkey,Hamster,Chicken,Plants,Rice,Fish

Source:

Mouse

Clonality:

Monoclonal

Clone Number:

2F40

Purification:

Affinity-chromatography.

Specificity:

GAPDH Mouse Monoclonal antibody detects endogenous levels of total GAPDH protein.

Format:

Liquid

Concentration:

1mg/ml

Storage Condition and Buffer:

Mouse IgG1 in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

Immunogen Information

Immunogen:

Full-length GAPDH protein of human.

Uniprot:



>>Visit The Human Protein Atlas

Gene id:

Molecular Weight:

Observed Mol.Wt.: 34KD.
Predicted Mol.Wt.: 37kDa.

Subcellular Location:

Cytoplasm > cytosol. Nucleus. Cytoplasm > perinuclear region. Membrane. Translocates to the nucleus following S-nitrosylation and interaction with SIAH1, which contains a nuclear localization signal (By similarity). Postnuclear and Perinuclear regions.

Description:

Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) is well known as one of the key enzymes involved in glycolysis. GAPDH is constitutively abundant expressed in almost cell types at high levels, therefore antibodies against GAPDH are useful as loading controls for Western Blotting. Some pathology factors, such as hypoxia and diabetes, increased or decreased GAPDH expression in certain cell types.

Sequence:
        10         20         30         40         50
MGKVKVGVNG FGRIGRLVTR AAFNSGKVDI VAINDPFIDL NYMVYMFQYD
60 70 80 90 100
STHGKFHGTV KAENGKLVIN GNPITIFQER DPSKIKWGDA GAEYVVESTG
110 120 130 140 150
VFTTMEKAGA HLQGGAKRVI ISAPSADAPM FVMGVNHEKY DNSLKIISNA
160 170 180 190 200
SCTTNCLAPL AKVIHDNFGI VEGLMTTVHA ITATQKTVDG PSGKLWRDGR
210 220 230 240 250
GALQNIIPAS TGAAKAVGKV IPELNGKLTG MAFRVPTANV SVVDLTCRLE
260 270 280 290 300
KPAKYDDIKK VVKQASEGPL KGILGYTEHQ VVSSDFNSDT HSSTFDAGAG
310 320 330
IALNDHFVKL ISWYDNEFGY SNRVVDLMAH MASKE

Background

Function:

Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.

Post-translational Modifications:

S-nitrosylation of Cys-152 leads to interaction with SIAH1, followed by translocation to the nucleus (By similarity). S-nitrosylation of Cys-247 is induced by interferon-gamma and LDL(ox) implicating the iNOS-S100A8/9 transnitrosylase complex and seems to prevent interaction with phosphorylated RPL13A and to interfere with GAIT complex activity.ISGylated.Sulfhydration at Cys-152 increases catalytic activity.Oxidative stress can promote the formation of high molecular weight disulfide-linked GAPDH aggregates, through a process called nucleocytoplasmic coagulation. Such aggregates can be observed in vivo in the affected tissues of patients with Alzheimer disease or alcoholic liver cirrhosis, or in cell cultures during necrosis. Oxidation at Met-46 may play a pivotal role in the formation of these insoluble structures. This modification has been detected in vitro following treatment with free radical donor (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide. It has been proposed to destabilize nearby residues, increasing the likelihood of secondary oxidative damages, including oxidation of Tyr-45 and Met-105. This cascade of oxidations may augment GAPDH misfolding, leading to intermolecular disulfide cross-linking and aggregation.

Subcellular Location:

Nucleus;Cytosol;Cytoskeleton;

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Homotetramer. Interacts with TPPP; the interaction is direct. Interacts (when S-nitrosylated) with SIAH1; leading to nuclear translocation. Interacts with RILPL1/GOSPEL, leading to prevent the interaction between GAPDH and SIAH1 and prevent nuclear translocation. Interacts with CHP1; the interaction increases the binding of CHP1 with microtubules. Associates with microtubules (By similarity). Interacts with EIF1AD, USP25, PRKCI and WARS. Interacts with phosphorylated RPL13A; inhibited by oxidatively-modified low-densitity lipoprotein (LDL(ox)). Component of the GAIT complex. Interacts with FKBP6; leading to inhibit GAPDH catalytic activity.

Similarity:

The [IL]-x-C-x-x-[DE] motif is a proposed target motif for cysteine S-nitrosylation mediated by the iNOS-S100A8/A9 transnitrosylase complex.Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.

Research Fields

Research Fields:

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.(View pathway)
· Human Diseases > Neurodegenerative diseases > Alzheimer's disease.
· Metabolism > Global and overview maps > Biosynthesis of amino acids.
· Metabolism > Global and overview maps > Carbon metabolism.
· Metabolism > Carbohydrate metabolism > Glycolysis / Gluconeogenesis.
· Metabolism > Global and overview maps > Metabolic pathways.

Western blot analysis of various lysates, using GAPDH Mouse Monoclonal Antibody.

Reference Citations:

1). J.-H.Li et al. Influence of exercises using different energy metabolism systems on NNMT expression in different types of skeletal muscle fibers. SCI SPORT 2017;32(1):27-32

2). Tian YM et al. Chronic intermittent hypobaric hypoxia ameliorates diabetic nephropathy through enhancing HIF1 signaling in rats. Diabetes Res Clin Pract 2016 Aug;118:90-7 (PubMed: 27351799)

Application: WB    Species:Not available;    Sample:Not available;


3). Chun Luo et al. A novel herbal treatment reduces liver damage and increases RRAR-γ in the liver of type 2 diabetic rats. Int J Clin Exp Med 2017;10(3):4426-4434

4). Lian J et al. Cortex Mori Radicis extract attenuates myocardial damages in diabetic rats by regulating ERS. Biomed Pharmacother 2017 Jun;90:777-785 (PubMed: 28427040)

Application: WB    Species: rat;    Sample:Not available;

Fig. 4. Effects of the Cortex Mori Radicis extract exerts on cardiac fibrosis. a.b. Western blots shows Collagen I and CTGF contents are increased in diabetes states, while the Cortex Mori Radicis extract exerts a decline in their expression. We calculated the fold changes by expressing each normalized value relative to the Control group.The results presented as the mean SEM (n = 3 per group) *p < 0.05 compared with control group; and # p < 0.05, ##p < 0.01 compared with diabetes group.


5). Wen-BingHu et al. Polysaccharides from Cyclocarya paliurus: Chemical composition and lipid-lowering effect on rats challenged with high-fat diet. J FUNCT FOODS 2017;36:262-273

6). Wen-BingHu et al. Polysaccharides from Cyclocarya paliurus: Chemical composition and lipid-lowering effect on rats challenged with high-fat diet. J FUNCT FOODS 2017;36:262-273

7). Zhang J et al. Long non-coding RNA NEAT1 regulates E2F3 expression by competitively binding to miR-377 in non-small cell lung cancer. Oncol Lett 2017 Oct;14(4):4983-4988 (PubMed: 29085511)

8). Ran H et al. Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN. J Exp Clin Cancer Res 2018 Mar 12;37(1):54 (PubMed: 29530061)

9). Ran H et al. Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN. J Exp Clin Cancer Res 2018 Mar 12;37(1):54 (PubMed: 29530061)

10). Liu S et al. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri. Fish Shellfish Immunol 2018 Sep;80:473-479 (PubMed: 29908321)

11). Yuan Y et al. STAT3 stimulates adipogenic stem cell proliferation and cooperates with HMGA2 during the early stage of differentiation to promote adipogenesis. Biochem Biophys Res Commun 2017 Jan 22;482(4):1360-1366 (PubMed: 27940362)

Application: WB    Species: mouse;    Sample:Not available;

STAT3 knockdown blocked cell cycle procession at S phase in adipogenic stem cells and early differentiating cells. (A) Flow cytometric analysis of 3T3-L1 stem cells at 48 h after siRNA introduction. Expression of cell cycle-associated genes was measured at mRNA (B) and protein (C) levels at 48 h after siRNA introduction in 3T3-L1 stem cells. (D) Flow cytometric analysis of 3T3-L1 cells that were differentiated for 24 h, with differentiation induced at 72 h after STAT3 siRNA introduction. qRT-PCR analysis (E) and Western blot analyses (F) of cell cycle-associated genes after STAT3 siRNA introduction. Values are presented as means ± S.D. of three replicates. * P < 0.01, # P < 0.05 vs siGL3.


12). Zhou Y et al. Irp2 Knockout Causes Osteoporosis by Inhibition of Bone Remodeling. Calcif Tissue Int 2018 Sep 6 (PubMed: 30191282)

13). Xu H et al. Involvement of insulin signalling pathway in methamphetamine-induced hyperphosphorylation of Tau. Toxicology 2018 Sep 1;408:88-94 (PubMed: 29981415)

No comment
Total 0 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
captcha
Catalog Number :

T0004-BP

Price/Size :

$200/1mg.
Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 1 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.