Product: c-Myc Mouse Monoclonal Antibody
Catalog: BF8036
Description: Mouse monoclonal antibody to c-Myc
Application: WB
Reactivity: Human, Mouse, Rat
Prediction: Pig, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
Mol.Wt.: 50~60kDa; 49kD(Calculated).
Uniprot: P01106

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Mouse
Application:
WB 1:500-1:2000
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Clonality:
Monoclonal [AFfirm8036(AFP21830)]
Specificity:
c-Myc Antibody detects endogenous levels of total c-Myc.
Conjugate:
Unconjugated.
Purification:
Affinity-chromatography.
Storage:
Mouse IgG1 in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

AU016757; Avian myelocytomatosis viral oncogene homolog; bHLHe39; c Myc; Class E basic helix-loop-helix protein 39; MRTL; Myc; Myc protein; Myc proto oncogene protein; Myc proto-oncogene protein; myc-related translation/localization regulatory factor; MYC_HUMAN; Myc2; MYCC; Myelocytomatosis oncogene; Niard; Nird; Oncogene Myc; OTTHUMP00000158589; Proto-oncogene c-Myc; Protooncogene homologous to myelocytomatosis virus; RNCMYC; Transcription factor p64; Transcriptional regulator Myc-A; V-Myc avian myelocytomatosis viral oncogene homolog; v-myc myelocytomatosis viral oncogene homolog (avian);

Immunogens

Immunogen:

A synthesized peptide derived from human c-Myc, corresponding to a region within N-terminal amino acids.

Uniprot:
Gene(ID):
Description:
Myc a proto-oncogenic transcription factor that plays a role in cell proliferation, apoptosis and in the development of human tumors.. Seems to activate the transcription of growth-related genes.
Sequence:
MPLNVSFTNRNYDLDYDSVQPYFYCDEEENFYQQQQQSELQPPAPSEDIWKKFELLPTPPLSPSRRSGLCSPSYVAVTPFSLRGDNDGGGGSFSTADQLEMVTELLGGDMVNQSFICDPDDETFIKNIIIQDCMWSGFSAAAKLVSEKLASYQAARKDSGSPNPARGHSVCSTSSLYLQDLSAAASECIDPSVVFPYPLNDSSSPKSCASQDSSAFSPSSDSLLSSTESSPQGSPEPLVLHEETPPTTSSDSEEEQEDEEEIDVVSVEKRQAPGKRSESGSPSAGGHSKPPHSPLVLKRCHVSTHQHNYAAPPSTRKDYPAAKRVKLDSVRVLRQISNNRKCTSPRSSDTEENVKRRTHNVLERQRRNELKRSFFALRDQIPELENNEKAPKVVILKKATAYILSVQAEEQKLISEEDLLRKRREQLKHKLEQLRNSCA

PTMs - P01106 As Substrate

Site PTM Type Enzyme
Ubiquitination
S6 Phosphorylation
T8 Phosphorylation P04049 (RAF1)
Y12 Phosphorylation
Y16 Phosphorylation
Y22 Phosphorylation
Y32 Phosphorylation P00519 (ABL1)
K51 Sumoylation
K51 Ubiquitination
K52 Sumoylation
K52 Ubiquitination
T58 O-Glycosylation
T58 Phosphorylation P49841 (GSK3B) , P28482 (MAPK1) , P49840 (GSK3A) , P53779 (MAPK10) , P45983 (MAPK8)
S62 Phosphorylation Q13627 (DYRK1A) , P45984 (MAPK9) , Q00535 (CDK5) , P28482 (MAPK1) , P45983 (MAPK8) , Q92630 (DYRK2) , P53779 (MAPK10) , P42345 (MTOR)
S64 Phosphorylation
S67 Phosphorylation
S71 Phosphorylation P28482 (MAPK1) , P45984 (MAPK9) , P53779 (MAPK10) , P45983 (MAPK8)
Y74 Phosphorylation P00519 (ABL1)
T78 Phosphorylation
S81 Phosphorylation
K143 Acetylation
K148 Acetylation
K148 Sumoylation
K148 Ubiquitination
S151 Phosphorylation
K157 Acetylation
K157 Sumoylation
K157 Ubiquitination
S161 Phosphorylation
T244 Phosphorylation
S249 Phosphorylation P68400 (CSNK2A1)
S250 Phosphorylation P68400 (CSNK2A1)
S252 Phosphorylation P68400 (CSNK2A1) , P48729 (CSNK1A1)
K275 Acetylation
S277 Phosphorylation
S279 Phosphorylation
S281 Phosphorylation
S288 Phosphorylation
K289 Ubiquitination
S293 Phosphorylation
K298 Ubiquitination
K317 Acetylation
K317 Sumoylation
K323 Acetylation
K323 Sumoylation
K323 Ubiquitination
K326 Sumoylation
K326 Ubiquitination
S329 Phosphorylation P11309 (PIM1) , Q9P1W9 (PIM2)
S337 Phosphorylation
T343 Phosphorylation
S344 Phosphorylation
S347 Phosphorylation P68400 (CSNK2A1)
S348 Phosphorylation P68400 (CSNK2A1)
T350 Phosphorylation
K355 Sumoylation
K355 Ubiquitination
T358 Phosphorylation Q13177 (PAK2)
K371 Acetylation
S373 Phosphorylation Q13177 (PAK2)
K389 Sumoylation
K389 Ubiquitination
K392 Sumoylation
K392 Ubiquitination
K398 Sumoylation
K398 Ubiquitination
T400 Phosphorylation Q13177 (PAK2)
S405 Phosphorylation
K412 Sumoylation
K412 Ubiquitination
K422 Ubiquitination
K430 Sumoylation
K430 Ubiquitination

Research Backgrounds

Function:

Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3'. Activates the transcription of growth-related genes. Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis. Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells. Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity).

PTMs:

Phosphorylated by PRKDC. Phosphorylation at Ser-329 by PIM2 leads to the stabilization of MYC (By similarity). Phosphorylation at Ser-62 by CDK2 prevents Ras-induced senescence. Phosphorylated at Ser-62 by DYRK2; this primes the protein for subsequent phosphorylation by GSK3B at Thr-58. Phosphorylation at Thr-58 and Ser-62 by GSK3 is required for ubiquitination and degradation by the proteasome.

Ubiquitinated by the SCF(FBXW7) complex when phosphorylated at Thr-58 and Ser-62, leading to its degradation by the proteasome. In the nucleoplasm, ubiquitination is counteracted by USP28, which interacts with isoform 1 of FBXW7 (FBW7alpha), leading to its deubiquitination and preventing degradation. In the nucleolus, however, ubiquitination is not counteracted by USP28 but by USP36, due to the lack of interaction between isoform 3 of FBXW7 (FBW7gamma) and USP28, explaining the selective MYC degradation in the nucleolus. Also polyubiquitinated by the DCX(TRUSS) complex. Ubiquitinated by TRIM6 in a phosphorylation-independent manner (By similarity).

Subcellular Location:

Nucleus>Nucleoplasm. Nucleus>Nucleolus.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

Efficient DNA binding requires dimerization with another bHLH protein. Binds DNA as a heterodimer with MAX. Interacts with TAF1C and SPAG9. Interacts with PARP10. Interacts with KDM5A and KDM5B. Interacts (when phosphorylated at Thr-58 and Ser-62) with FBXW7. Interacts with PIM2. Interacts with RIOX1. The heterodimer MYC:MAX interacts with ABI1; the interaction may enhance MYC:MAX transcriptional activity. Interacts with TRIM6 (By similarity). Interacts with NPM1; the binary complex is recruited to the promoter of MYC target genes and enhances their transcription. Interacts with CIP2A; leading to the stabilization of MYC.

Research Fields

· Cellular Processes > Cell growth and death > Cell cycle.   (View pathway)

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells.   (View pathway)

· Environmental Information Processing > Signal transduction > MAPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > ErbB signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Wnt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TGF-beta signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Hippo signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.   (View pathway)

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Endometrial cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Thyroid cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Bladder cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Breast cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Gastric cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Central carbon metabolism in cancer.   (View pathway)

· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.   (View pathway)

References

1). Augmentation of 3β-hydroxysteroid-Δ24 Reductase (DHCR24) Expression Induced by Bovine Viral Diarrhea Virus Infection Facilitates Viral Replication via Promoting Cholesterol Synthesis. Journal of Virology (PubMed: 36468862) [IF=5.4]

Application: WB    Species: bovine    Sample: bovine cells

FIG 9 Viral NS5A protein facilitates BVDV replication via upregulating the expression of DHCR24 to further promote cholesterol synthesis. (A, B) Identification of the NS5A expression in pCMV-NS5A-transfected bovine cells by IFA (A) and Western blotting (B). (C to E) Determination of viral replication levels (C), viral titers (D), and expression levels of viral proteins (E) in the NS5A-expressing bovine cells at 24 h after infection. (F) Identification of NS5A activating NF-κB by IFA. (G, H) Identification of the NS5A promoting mRNA and protein expression levels of the DHCR24 in the NS5A-expressing bovine cells by qRT-PCR (G) and Western blotting (H). (I) Determination of the NS5A promoting cholesterol synthesis. (J to L) Inhibitor of NF-κB activity (4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine [QNZ]) inhibited the mRNA and protein expression of the DHCR24 in the NS5A-expressing bovine cells by qRT-PCR (J) and Western blotting (K), as well as the cholesterol level (L). (M, N) The interaction relationship between viral NS5A protein and host DHCR24 protein was identified by IFA (M) and co-IP assay (N). DAPI, 4′,6-diamidino-2-phenylindole; IP, immunoprecipitation; ns, not significant.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.