Price Size
$280 100ul
$350 200ul

Same day delivery


For pricing and ordering contact:

local distributors
  • Product Name
    Phospho-FOXO1A (Ser329) Antibody
  • Catalog No.
    AF3416
  • RRID
    AB_2834858
  • Source
    Rabbit
  • Application
    WB,IHC,IF/ICC,ELISA(peptide)
  • Reactivity
    Human, Mouse, Rat
  • Prediction
    Pig, Bovine, Dog, Chicken, Xenopus
  • UniProt
  • Mol.Wt
    78kD;
    70kDa(Calculated).
  • Concentration
    1mg/ml
  • Browse similar products>>

Related Products

Product Information

Alternative Names:Expand▼

FKH 1; FKH1; FKHR; Forkhead (Drosophila) homolog 1 (rhabdomyosarcoma); Forkhead box O1; Forkhead box protein O1; Forkhead box protein O1A; Forkhead in rhabdomyosarcoma; Forkhead, Drosophila, homolog of, in rhabdomyosarcoma; FoxO transcription factor; foxo1; FOXO1_HUMAN; FOXO1A; OTTHUMP00000018301;

Applications:

WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500, ELISA(peptide) 1:20000-1:40000
*The optimal dilutions should be determined by the end user.

Reactivity:

Human, Mouse, Rat

Predicted Reactivity:

Pig, Bovine, Dog, Chicken, Xenopus

Source:

Rabbit

Clonality:

Polyclonal

Purification:

The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.

Specificity:

Phospho-FOXO1A (Ser329) Antibody detects endogenous levels of FOXO1A only when phosphorylated at Serine 329.

RRID:

AB_2834858
Please cite this product as: Affinity Biosciences Cat# AF3416, RRID:AB_2834858.

Format:

Liquid

Concentration:

1mg/ml

Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

Immunogen Information in 3D

Immunogen:

A synthesized peptide derived from human FOXO1A around the phosphorylation site of Ser329.

Uniprot:



>>Visit The Human Protein Atlas

Gene ID:

Gene Name:

FOXO1

Molecular Weight:

Observed Mol.Wt.: 78kD.
Predicted Mol.Wt.: 70kDa(Calculated)..

Subcellular Location:

Cytoplasm. Nucleus. Shuttles between cytoplasm and nucleus.

Tissue Specificity:

Q12778 FOXO1_HUMAN:
Ubiquitous.

Description:

This gene belongs to the forkhead family of transcription factors which are characterized by a distinct forkhead domain. The specific function of this gene has not yet been determined; however, it may play a role in myogenic growth and differentiation.

Sequence:
MAEAPQVVEIDPDFEPLPRPRSCTWPLPRPEFSQSNSATSSPAPSGSAAANPDAAAGLPSASAAAVSADFMSNLSLLEESEDFPQAPGSVAAAVAAAAAAAATGGLCGDFQGPEAGCLHPAPPQPPPPGPLSQHPPVPPAAAGPLAGQPRKSSSSRRNAWGNLSYADLITKAIESSAEKRLTLSQIYEWMVKSVPYFKDKGDSNSSAGWKNSIRHNLSLHSKFIRVQNEGTGKSSWWMLNPEGGKSGKSPRRRAASMDNNSKFAKSRSRAAKKKASLQSGQEGAGDSPGSQFSKWPASPGSHSNDDFDNWSTFRPRTSSNASTISGRLSPIMTEQDDLGEGDVHSMVYPPSAAKMASTLPSLSEISNPENMENLLDNLNLLSSPTSLTVSTQSSPGTMMQQTPCYSFAPPNTSLNSPSPNYQKYTYGQSSMSPLPQMPIQTLQDNKSSYGGMSQYNCAPGLLKELLTSDSPPHNDIMTPVDPGVAQPNSRVLGQNVMMGPNSVMSTYGSQASHNKMMNPSSHTHPGHAQQTSAVNGRPLPHTVSTMPHTSGMNRLTQVKTPVQVPLPHPMQMSALGGYSSVSSCNGYGRMGLLHQEKLPSDLDGMFIERLDCDMESIIRNDLMDGDTLDFNFDNVLPNQSFPHSVKTTTHSWVSG

Research Background

Function:

Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress. Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3'. Activity suppressed by insulin. Main regulator of redox balance and osteoblast numbers and controls bone mass. Orchestrates the endocrine function of the skeleton in regulating glucose metabolism. Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity. Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP. In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC and PCK1. Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1. Promotes neural cell death. Mediates insulin action on adipose tissue. Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake. Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells. Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner. Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity).

Post-translational Modifications:

Phosphorylation by NLK promotes nuclear export and inhibits the transcriptional activity. In response to growth factors, phosphorylation on Thr-24, Ser-256 and Ser-322 by PKB/AKT1 promotes nuclear export and inactivation of transactivational activity. Phosphorylation on Thr-24 is required for binding 14-3-3 proteins. Phosphorylation of Ser-256 decreases DNA-binding activity and promotes the phosphorylation of Thr-24 and Ser-319, permitting phosphorylation of Ser-322 and Ser-325, probably by CDK1, leading to nuclear exclusion and loss of function. Stress signals, such as response to oxygen or nitric oxide, attenuate the PKB/AKT1-mediated phosphorylation leading to nuclear retention. Phosphorylation of Ser-329 is independent of IGF1 and leads to reduced function. Dephosphorylated on Thr-24 and Ser-256 by PP2A in beta-cells under oxidative stress leading to nuclear retention (By similarity). Phosphorylation of Ser-249 by CDK1 disrupts binding of 14-3-3 proteins leading to nuclear accumulation and has no effect on DNA-binding nor transcriptional activity. Phosphorylation by STK4/MST1 on Ser-212, upon oxidative stress, inhibits binding to 14-3-3 proteins and nuclear export.

Acetylated. Acetylation at Lys-262, Lys-265 and Lys-274 are necessary for autophagic cell death induction. Deacetylated by SIRT2 in response to oxidative stress or serum deprivation, thereby negatively regulating FOXO1-mediated autophagic cell death.

Ubiquitinated by SKP2. Ubiquitination leads to proteasomal degradation.

Methylation inhibits AKT1-mediated phosphorylation at Ser-256 and is increased by oxidative stress.

Once in the nucleus, acetylated by CREBBP/EP300. Acetylation diminishes the interaction with target DNA and attenuates the transcriptional activity. It increases the phosphorylation at Ser-256. Deacetylation by SIRT1 results in reactivation of the transcriptional activity. Oxidative stress by hydrogen peroxide treatment appears to promote deacetylation and uncoupling of insulin-induced phosphorylation. By contrast, resveratrol acts independently of acetylation.

Subcellular Location:

Cytoplasm. Nucleus.
Note: Shuttles between the cytoplasm and nucleus. Largely nuclear in unstimulated cells. In osteoblasts, colocalizes with ATF4 and RUNX2 in the nucleus (By similarity). Insulin-induced phosphorylation at Ser-256 by PKB/AKT1 leads, via stimulation of Thr-24 phosphorylation, to binding of 14-3-3 proteins and nuclear export to the cytoplasm where it is degraded by the ubiquitin-proteosomal pathway. Phosphorylation at Ser-249 by CDK1 disrupts binding of 14-3-3 proteins and promotes nuclear accumulation. Phosphorylation by NLK results in nuclear export. Translocates to the nucleus upon oxidative stress-induced phosphorylation at Ser-212 by STK4/MST1. SGK1-mediated phosphorylation also results in nuclear translocation. Retained in the nucleus under stress stimuli including oxidative stress, nutrient deprivation or nitric oxide. Retained in the nucleus on methylation.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Tissue Specificity:

Ubiquitous.

Subunit Structure:

Interacts with LRPPRC. Interacts with RUNX2; the interaction inhibits RUNX2 transcriptional activity and mediates the IGF1/insulin-dependent BGLAP expression in osteoblasts Interacts with PPP2R1A; the interaction regulates the dephosphorylation of FOXO1 at Thr-24 and Ser-256 leading to its nuclear import. Interacts (acetylated form) with PPARG. Interacts with XBP1 isoform 2; this interaction is direct and leads to FOXO1 ubiquitination and degradation via the proteasome pathway (By similarity). Interacts with NLK. Interacts with SIRT1; the interaction results in the deacetylation of FOXO1 leading to activation of FOXO1-mediated transcription of genes involved in DNA repair and stress resistance. Binds to CDK1. Interacts with the 14-3-3 proteins, YWHAG and YWHAZ; the interactions require insulin-stimulated phosphorylation on Thr-24, promote nuclear exit and loss of transcriptional activity. Interacts with SKP2; the interaction ubiquitinates FOXO1 leading to its proteosomal degradation. The interaction requires the presence of KRIT1. Interacts (via the C-terminal half) with ATF4 (via its DNA-binding domain); the interaction occurs in osteoblasts, regulates glucose homeostasis via suppression of beta-cell proliferation and subsequent decrease in insulin production. Interacts with PRMT1; the interaction methylates FOXO1, prevents PKB/AKT1 phosphorylation and retains FOXO1 in the nucleus. Interacts with EP300 and CREBBP; the interactions acetylate FOXO1. Interacts with SIRT2; the interaction is disrupted in response to oxidative stress or serum deprivation, leading to increased level of acetylated FOXO1, which promotes stress-induced autophagy by stimulating E1-like activating enzyme ATG7. Interacts (acetylated form) with ATG7; the interaction is increased in response to oxidative stress or serum deprivation and promotes the autophagic process leading to cell death. Interacts (via the Fork-head domain) with CEBPA; the interaction increases when FOXO1 is deacetylated. Interacts with WDFY2. Forms a complex with WDFY2 and AKT1 (By similarity). Interacts with CRY1 (By similarity).

Research Fields

Research Fields:

· Cellular Processes > Cell growth and death > Cellular senescence.(View pathway)
· Environmental Information Processing > Signal transduction > FoxO signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > AMPK signaling pathway.(View pathway)
· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.
· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.
· Human Diseases > Cancers: Overview > Pathways in cancer.(View pathway)
· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.
· Human Diseases > Cancers: Specific types > Prostate cancer.(View pathway)
· Organismal Systems > Aging > Longevity regulating pathway.(View pathway)
· Organismal Systems > Aging > Longevity regulating pathway - multiple species.(View pathway)
· Organismal Systems > Endocrine system > Insulin signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Glucagon signaling pathway.

Reference Citations:

1). He WH et al. Estradiol promotes trophoblast viability and invasion by activating SGK1. Biomed Pharmacother 2019 Sep;117:109092 (PubMed: 31203134) [IF=4.545]

2). Gao HE;Wu DS;Sun L;Yang LD;Qiao YB;Ma S;Wu ZJ;Ruan L;Li FH; et al. Effects of Lifelong Exercise on Age-Related Body Composition, Oxidative Stress, Inflammatory Cytokines, and Skeletal Muscle Proteome in Rats. Mech Ageing Dev 2020 May 15;111262. (PubMed: 32422206) [IF=4.304]

3). Xiong Q et al. Nr2e1 ablation impairs liver glucolipid metabolism and induces inflammation, high-fat diets amplify the damage. Biomed Pharmacother 2019 Oct 4;120:109503 (PubMed: 31590127) [IF=4.238]

4). Chen D et al. Quxie Capsule Inhibits Colon Tumor Growth Partially Through Foxo1-Mediated Apoptosis and Immune Modulation. Integr Cancer Ther 2019 Jan-Dec;18:1534735419846377 (PubMed: 31030593)

5). Xiangli Yan et al. Calycosin-7-O-β-D-glucoside Attenuates OGD/R-Induced Damage by Preventing Oxidative Stress and Neuronal Apoptosis via the SIRT1/FOXO1/PGC-1α Pathway in HT22 Cells. NEURAL PLAST 2019, Article ID 8798069, 11 pages

No comment
Total 0 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
captcha
Catalog Number :

AF3416-BP
(Blocking peptide available as AF3416-BP)

Price/Size :

$350/1mg.
Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 10 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Pig
100%
Bovine
100%
Dog
100%
Xenopus
92%
Chicken
85%
Horse
0%
Sheep
0%
Zebrafish
0%
Rabbit
0%
High similarity Medium similarity Low similarity No similarity
Q12778 as Substrate
Site PTM Type Enzyme
T24 Phosphorylation P31751 (AKT2) , P31749 (AKT1) , P11309-2 (PIM1) , PR:P31749 (hAKT1)
S152 Phosphorylation
S153 Phosphorylation
S164 Phosphorylation
T182 Phosphorylation
S184 Phosphorylation
S205 Phosphorylation
K210 Ubiquitination
S212 Phosphorylation Q13043 (STK4)
S215 Phosphorylation
S218 Phosphorylation
K222 Acetylation
S234 Phosphorylation
S235 Phosphorylation
K245 Acetylation
S246 Phosphorylation P28482 (MAPK1)
K248 Acetylation
S249 Phosphorylation P06493 (CDK1) , Q00535 (CDK5) , P24941 (CDK2) , P11802 (CDK4)
R251 Methylation
R253 Methylation
S256 Phosphorylation PR:P31749 (hAKT1) , Q13153 (PAK1) , Q16512 (PKN1) , P31749 (AKT1) , P31751 (AKT2) , P11309-2 (PIM1)
K262 Acetylation
K265 Acetylation
K274 Acetylation
S276 Phosphorylation
S287 Phosphorylation
S293 Phosphorylation
K294 Acetylation
S298 Phosphorylation
S301 Phosphorylation
S303 Phosphorylation
T317 O-Glycosylation
S318 O-Glycosylation
S319 Phosphorylation PR:P31749 (hAKT1) , Q13237 (PRKG2) , P31749 (AKT1) , P11309-2 (PIM1)
S322 Phosphorylation P48729 (CSNK1A1) , Q9HCP0 (CSNK1G1)
T323 Phosphorylation
S325 Phosphorylation P48729 (CSNK1A1) , P49841 (GSK3B)
S329 Phosphorylation Q9UBE8 (NLK) , Q13627 (DYRK1A)
T333 Phosphorylation
S383 Phosphorylation
S394 Phosphorylation
T402 Phosphorylation
S413 Phosphorylation P28482 (MAPK1)
S416 Phosphorylation Q16539 (MAPK14)
S418 Phosphorylation P28482 (MAPK1)
S429 Phosphorylation P28482 (MAPK1)
S430 Phosphorylation
S432 Phosphorylation Q16539 (MAPK14)
T467 Phosphorylation
S470 Phosphorylation P28482 (MAPK1) , Q16539 (MAPK14)
T478 Phosphorylation Q16539 (MAPK14) , P28482 (MAPK1)
S505 Phosphorylation
S509 Phosphorylation
S550 O-Glycosylation
T560 Phosphorylation Q16539 (MAPK14) , P28482 (MAPK1)
K597 Acetylation
T648 O-Glycosylation
T649 Phosphorylation Q13131 (PRKAA1)
S651 Phosphorylation
S654 O-Glycosylation
IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.

To Top