Price Size
$280 100ul
$350 200ul

Same day delivery

Contact distributor
  • Product Name
    Phospho-JNK1/2/3 (Thr183+Tyr185) Antibody
  • Catalog No.
    AF3318
  • Source
    Rabbit
  • Application
    WB,IHC,IF/ICC,ELISA
  • Reactivity
    Hm,Ms,Rt
  • UniProt
  • Mol.Wt.
    46,54kDa
  • Concentration
    1mg/ml
  • Browse similar products>>

Product Information

Alternative Names:Expand▼

C Jun kinase 2; c Jun N terminal kinase 1; c Jun N terminal kinase 2; c Jun N terminal kinase 3; c-Jun N-terminal kinase 1; JNK 46; JNK 55; JNK; JNK-46; JNK1; JNK1A2; JNK2; JNK21B1/2; JNK2A; JNK2ALPHA; JNK2B; JNK2BETA; JNK3 alpha protein kinase; JNK3; JNK3A; Jun kinase; JUN N terminal kinase; MAP kinase 10; MAP kinase 8; MAP kinase 9; MAP kinase p49 3F12; MAPK 10; MAPK 8; MAPK 9; MAPK10; mapk8; MAPK9; Mitogen activated protein kinase 10; Mitogen activated protein kinase 8; Mitogen activated protein kinase 8 isoform JNK1 alpha1; Mitogen activated protein kinase 8 isoform JNK1 beta2; Mitogen activated protein kinase 9; Mitogen-activated protein kinase 8; MK08_HUMAN; p493F12; p54a; p54aSAPK; p54bSAPK; PRKM10; PRKM8; PRKM9; SAPK; SAPK(beta); SAPK1; SAPK1a; SAPK1b; SAPK1c; Stress activated protein kinase 1; Stress activated protein kinase 1a; Stress activated protein kinase 1b; Stress activated protein kinase 1c; Stress activated protein kinase beta; Stress activated protein kinase JNK1; Stress activated protein kinase JNK2; Stress activated protein kinase JNK3; Stress-activated protein kinase 1c; Stress-activated protein kinase JNK1; c Jun kinase 2; C Jun N terminal kinase 2; c-Jun N-terminal kinase 2; JNK 55; JNK-55; JNK2 alpha; JNK2; JNK2 beta; JNK2A; JNK2alpha; JNK2B; JNK2BETA; Jun kinase; MAP kinase 9; MAPK 9; Mapk9; Mitogen activated protein kinase 9; Mitogen-activated protein kinase 9; MK09_HUMAN; P54a; p54aSAPK; PRKM9; Protein kinase, mitogen-activated, 9; SAPK alpha; SAPK; SAPK1a; Stress activated protein kinase 1a; Stress-activated protein kinase JNK2; c Jun kinase 3; c-Jun N-terminal kinase 3; cJun N terminal kinase 3; FLJ12099; FLJ33785; JNK3 alpha protein kinase; JNK3; JNK3A; MAP kinase 10; MAP kinase; MAP kinase p49 3F12; MAPK 10; Mapk10; MGC50974; mitogen activated protein kinase 10; Mitogen-activated protein kinase 10; MK10_HUMAN; p493F12; p54bSAPK; PRKM10; protein kinase mitogen activated 10; SAPK1b; Stress activated protein kinase 1b; stress activated protein kinase beta; Stress activated protein kinase JNK3; Stress-activated protein kinase JNK3;

Applications:

WB 1:500-1:2000 IHC 1:100-1:500 IF 1:100-1:500, ELISA(peptide) 1:20000-1:40000

Reactivity:

Human,Mouse,Rat

Source:

Rabbit

Clonality:

Polyclonal

Purification:

The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho- and non-phospho-peptide affinity columns.

Specificity:

Phospho-JNK1/2/3 (Thr183+Tyr185) Antibody detects endogenous levels of JNK1/2/3 only when phosphorylated at Threonine 183+Tyrosine 185.

Format:

Liquid

Concentration:

1mg/ml

Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

Immunogen Information

Immunogen:

A synthesized peptide derived from human JNK1/2/3 around the phosphorylation site of Threonine 183+Tyrosine 185.

Uniprot:



>>Visit The Human Protein Atlas

Gene id:

Molecular Weight:

Observed Mol.Wt.: 46,54kDa.
Predicted Mol.Wt.: 49kDa.

Subcellular Location:

Cytoplasm. Nucleus.

Description:

JNK3 a protein kinase of the MAPK family that is potently activated by a variety of environmental stress and pro-inflammatory cytokines. Brain-selective JNK isoform.

Sequence:
        10         20         30         40         50
MSRSKRDNNF YSVEIGDSTF TVLKRYQNLK PIGSGAQGIV CAAYDAILER
60 70 80 90 100
NVAIKKLSRP FQNQTHAKRA YRELVLMKCV NHKNIIGLLN VFTPQKSLEE
110 120 130 140 150
FQDVYIVMEL MDANLCQVIQ MELDHERMSY LLYQMLCGIK HLHSAGIIHR
160 170 180 190 200
DLKPSNIVVK SDCTLKILDF GLARTAGTSF MMTPYVVTRY YRAPEVILGM
210 220 230 240 250
GYKENVDLWS VGCIMGEMVC HKILFPGRDY IDQWNKVIEQ LGTPCPEFMK
260 270 280 290 300
KLQPTVRTYV ENRPKYAGYS FEKLFPDVLF PADSEHNKLK ASQARDLLSK
310 320 330 340 350
MLVIDASKRI SVDEALQHPY INVWYDPSEA EAPPPKIPDK QLDEREHTIE
360 370 380 390 400
EWKELIYKEV MDLEERTKNG VIRGQPSPLG AAVINGSQHP SSSSSVNDVS
410 420
SMSTDPTLAS DTDSSLEAAA GPLGCCR

Background

Function:

Serine/threonine-protein kinase involved in various processes such as cell proliferation, differentiation, migration, transformation and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK8/JNK1. In turn, MAPK8/JNK1 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN, JDP2 and ATF2 and thus regulates AP-1 transcriptional activity. Phosphorylates the replication licensing factor CDT1, inhibiting the interaction between CDT1 and the histone H4 acetylase HBO1 to replication origins. Loss of this interaction abrogates the acetylation required for replication initiation. Promotes stressed cell apoptosis by phosphorylating key regulatory factors including p53/TP53 and Yes-associates protein YAP1. In T-cells, MAPK8 and MAPK9 are required for polarized differentiation of T-helper cells into Th1 cells. Contributes to the survival of erythroid cells by phosphorylating the antagonist of cell death BAD upon EPO stimulation. Mediates starvation-induced BCL2 phosphorylation, BCL2 dissociation from BECN1, and thus activation of autophagy. Phosphorylates STMN2 and hence regulates microtubule dynamics, controlling neurite elongation in cortical neurons. In the developing brain, through its cytoplasmic activity on STMN2, negatively regulates the rate of exit from multipolar stage and of radial migration from the ventricular zone. Phosphorylates several other substrates including heat shock factor protein 4 (HSF4), the deacetylase SIRT1, ELK1, or the E3 ligase ITCH. Phosphorylates the CLOCK-ARNTL/BMAL1 heterodimer and plays a role in the regulation of the circadian clock (PubMed:22441692). Phosphorylates the heat shock transcription factor HSF1, suppressing HSF1-induced transcriptional activity (PubMed:10747973).

Post-translational Modifications:

Dually phosphorylated on Thr-183 and Tyr-185 by MAP2K7 and MAP2K4, which activates the enzyme (PubMed:11062067). Phosphorylated by TAOK2 (PubMed:17158878). May be phosphorylated at Thr-183 and Tyr-185 by MAP3K1/MEKK1 (PubMed:17761173).

Subcellular Location:

Nucleus;

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Binds to at least four scaffolding proteins, MAPK8IP1/JIP-1, MAPK8IP2/JIP-2, MAPK8IP3/JIP-3/JSAP1 and SPAG9/MAPK8IP4/JIP-4 (PubMed:15693750). These proteins also bind other components of the JNK signaling pathway. Interacts with TP53 and WWOX (PubMed:12514174). Interacts with JAMP (By similarity). Forms a complex with MAPK8IP1 and ARHGEF28 (By similarity). Interacts with HSF1 (via D domain and preferentially with hyperphosphorylated form); this interaction occurs under both normal growth conditions and immediately upon heat shock (PubMed:10747973). Interacts (phosphorylated form) with NFE2; the interaction phosphorylates NFE2 in undifferentiated cells (By similarity). Interacts with NFATC4 (PubMed:17875713). Interacts with MECOM; regulates JNK signaling (PubMed:10856240). Interacts with PIN1; this interaction mediates MAPK8 conformational changes leading to the binding of MAPK8 to its substrates (PubMed:21660049). Interacts with GRIPAP1 (PubMed:17761173).

Similarity:

The TXY motif contains the threonine and tyrosine residues whose phosphorylation activates the MAP kinases.Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.

Research Fields

Research Fields:

· Cellular Processes > Cellular community - eukaryotes > Focal adhesion.(View pathway)
· Cellular Processes > Cellular community - eukaryotes > Tight junction.(View pathway)
· Cellular Processes > Cell growth and death > Apoptosis.(View pathway)
· Cellular Processes > Transport and catabolism > Autophagy - animal.(View pathway)
· Cellular Processes > Cell growth and death > Apoptosis - multiple species.(View pathway)
· Cellular Processes > Cell growth and death > Necroptosis.(View pathway)
· Environmental Information Processing > Signal transduction > TNF signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > MAPK signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > ErbB signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Wnt signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > FoxO signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Ras signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > cAMP signaling pathway.(View pathway)
· Genetic Information Processing > Folding, sorting and degradation > Protein processing in endoplasmic reticulum.(View pathway)
· Human Diseases > Cancers: Specific types > Pancreatic cancer.(View pathway)
· Human Diseases > Cancers: Overview > Pathways in cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Colorectal cancer.(View pathway)
· Human Diseases > Endocrine and metabolic diseases > Type II diabetes mellitus.
· Human Diseases > Infectious diseases: Bacterial > Pertussis.
· Human Diseases > Infectious diseases: Bacterial > Salmonella infection.
· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.
· Human Diseases > Cancers: Overview > Choline metabolism in cancer.(View pathway)
· Human Diseases > Infectious diseases: Bacterial > Shigellosis.
· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.
· Human Diseases > Infectious diseases: Viral > Hepatitis C.
· Human Diseases > Infectious diseases: Viral > Hepatitis B.
· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).
· Human Diseases > Infectious diseases: Bacterial > Epithelial cell signaling in Helicobacter pylori infection.
· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.
· Human Diseases > Infectious diseases: Viral > Influenza A.
· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.
· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).
· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.
· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.
· Organismal Systems > Immune system > Th1 and Th2 cell differentiation.(View pathway)
· Organismal Systems > Immune system > RIG-I-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > Toll-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > IL-17 signaling pathway.(View pathway)
· Organismal Systems > Immune system > Fc epsilon RI signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Progesterone-mediated oocyte maturation.
· Organismal Systems > Endocrine system > Relaxin signaling pathway.
· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.
· Organismal Systems > Endocrine system > Insulin signaling pathway.(View pathway)
· Organismal Systems > Immune system > Th17 cell differentiation.(View pathway)
· Organismal Systems > Endocrine system > Prolactin signaling pathway.(View pathway)
· Organismal Systems > Nervous system > Neurotrophin signaling pathway.(View pathway)
· Organismal Systems > Nervous system > Dopaminergic synapse.
· Organismal Systems > Development > Osteoclast differentiation.(View pathway)
· Organismal Systems > Sensory system > Inflammatory mediator regulation of TRP channels.(View pathway)
· Organismal Systems > Immune system > NOD-like receptor signaling pathway.(View pathway)
· Organismal Systems > Nervous system > Retrograde endocannabinoid signaling.(View pathway)

Western blot analysis of Phospho-JNK1/2/3 (Thr183+Tyr185) using various lysates Lanes 1 - 2: Merged signal (red and green). Green - AF3318 observed at 46,54 kDa. Red - loading control, T0023, observed at 55 kDa. Blots were developed with Goat Anti-Rabbit IgG(H+L) FITC–conjugated (S0008) and Goat Anti-Mouse IgG(H+L) Alexa Fluor 594–conjugated (S0005) secondary antibodies
Western blot analysis of Phospho-JNK1/2/3 (Thr183+Tyr185) expression in various lysates
This image is a courtesy of anonymous review.
Western blot analysis of JNK1/2/3 phosphorylation expression in UV treated 293 whole cell lysates,The lane on the left is treated with the antigen-specific peptide.
AF3318 at 1/200 staining Rat ganstric tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Rat ganstric tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Rat kidney tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Rat lung tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Rat lung tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Mouse spleen tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Mouse spleen tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Mouse spleen tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Mouse kidney tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Mouse kidney tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Mouse testis tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Mouse testis tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Human bladder cancer tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Human bladder cancer tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Human liver cancer tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Human heart tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3318 at 1/200 staining Human heart tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
Phospho-JNK1/2/3 (Thr183+Tyr185) Antibody for IHC in human brain tissue.
AF3318 staining 293 by IF/ICC. The sample were fixed with PFA and permeabilized in 0.1% Triton X-100,then blocked in 10% serum for 45 minutes at 25°C. The primary antibody was diluted at 1/200 and incubated with the sample for 1 hour at 37°C. An Alexa Fluor 594 conjugated goat anti-rabbit IgG (H+L) Ab, diluted at 1/600, was used as the secondary antibody.
AF3318 staining HeLa  cells by IF/ICC. The sample were fixed with PFA and permeabilized in 0.1% Triton X-100,then blocked in 10% serum for 45 minutes at 25°C. The primary antibody was diluted at 1/200 and incubated with the sample for 1 hour at 37°C. An Alexa Fluor 594 conjugated goat anti-rabbit IgG (H+L) antibody(Cat.# S0006), diluted at 1/600, was used as secondary antibody.
ELISA analysis of AF3318 showing specificity to Phospho-JNK1/2/3 (Thr183+Tyr185) peptide. Peptides concentration: 1ug/ml.
P-peptide: phospho-peptide; N-peptide: non-phospho-peptide.

Reference Citations:

1). Geng H et al. Cigarette smoke extract-induced proliferation of normal human urothelial cells via the MAPK/AP-1 pathway. Oncol Lett 2017 Jan;13(1):469-475 (PubMed: 28123584)

Application: WB 1/1000    Species: human;    Sample: SV-HUC-1 cells;

Figure 4. (A) Fold change in cell viability of SV-HUC-1 cells treated with 0, 0.10 and 0.25% CSE for 7 days in combination with 5 µM U0126, 5 µM SB203580 or 2 µM SP600125. Data are representative of three independent experiments and are expressed as the mean ± standard deviation. * P


2). Jin X et al. 11-O-acetylcyathatriol inhibits MAPK/p38-mediated inflammation in LPS-activated RAW 264.7 macrophages and has a protective effect on ethanol-induced gastric injury. Mol Med Rep 2016 Jul;14(1):874-80 (PubMed: 27222252)

Application: WB    Species: mouse;    Sample:Not available;

Figure 3. Effects of 11‑O‑acetylcyathatriol on the protein expression levels of iNOS and COX‑2. The RAW 264.7 cells were treated by 1 µg/ml of LPS with indicated concentrations of 11-O‑acetylcyathatriol (12.5, 25, 50 and 100 µM) for 24 h, and the expression levels of (A) iNOS and COX‑2 were detected using western blot analysis. (B) Effects of 11‑O-acetylcyathatriol on the phosphorylation of ERK1/2, JNK and p38 proteins. RAW 264.7 cells were treated with 1 µg/ml LPS with 11‑O‑acetylcyathatriol (12.5, 25, 50 and 100 µM) for 30 min, and the protein expression levels of p‑ERK1/2, p‑JNK and p‑p38 were detected using western blot analysis. (C) Effects of 11‑O-acetylcyathatriol on the protein degradation of IκB-α. RAW 264.7 cells were treated with 1 µg/ml of LPS with 11-O‑acetylcyathatriol (12.5, 25, 50 and 100 µM) for 10 min, and the protein expression of IκB-α was detected using western blot analysis. iNOS, inducible nitric oxide synthase; COX‑2, cyclooxygenase‑2; LPS, lipopolysaccharide; ERK, extracellular signal‑regulated kinase; JNK, c‑Jun N‑terminal kinase; IκB-α, inhibitor of nuclear factor-κB-α; p‑, phosphorylated.


3). Jin X et al. Tiliroside, the major component of Agrimonia pilosa Ledeb ethanol extract, inhibits MAPK/JNK/p38-mediated inflammation in lipopolysaccharide-activated RAW 264.7 macrophages. Exp Ther Med 2016 Jul;12(1):499-505 (PubMed: 27347085)

Application: WB    Species: mouse;    Sample:Not available;

Figure 7. Effect of tiliroside on the phosphorylation of mitogen‑activated protein kinase‑ERK/JNK/p38 proteins. (A) RAW 264.7 cells were treated with LPS 1 µg/ml with or without tiliroside (12.5, 25, 50, and 100 µM) for 45 min and the expression of p‑ERK1/2, p‑JNK and p‑p38 was assessed by western blot analysis. Detection of β‑actin was conducted to confirm the equal loading of proteins. Densitometric analysis of p‑ERK1/2 (B) p‑JNK (C) and p‑p38 (D) expression represent the mean±standard deviation of three separate experiments. Data were normalized with respect to β‑actin levels. **P


4). Peng J et al. MiR-377 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity via suppression of sirtuin-1 (SIRT1). Oncotarget 2017 Jul 31;8(41):70550-70563 (PubMed: 29050301)

Application: WB    Species: mouse;    Sample:Not available;

Figure 4: MiR-377 promotes inflammation and insulin-resistance in mature 3T3-L1 cells. After transfection with 100 nM miR-377 mimics or inhibitor for 24 h, differentiated 3T3-L1 adipocytes were treated with 10 ng/ml TNFα for 24 h and then stimulated with 100 nM insulin for 15 min. Cells were then harvested for real-time PCR and immunoblotting analyses. (A) The effect of miR-377 overexpression on inflammation-related gene expression. *P < 0.05, **P < 0.01 vs. NC 0.1% BSA; ##P < 0.01 vs. NC 10 ng/ml TNFα; ns, not signifcant (n = 3). (B) The effect of miR-377 inhibition on inflammation-related gene expression under conditions of TNFα-induced insulin-resistance. ##P < 0.01 vs. NC 10 ng/ml TNFα(n = 3). (C) The effect of miR-377 overexpression on JNK phosphorylation under conditions of TNFα-induced insulin-resistance. *P < 0.05 vs. NC without insulin; #P < 0.05 vs. NC with insulin (n = 3). (D and E) The effect of miR-377 overexpression on AKT and ERK phosphorylation. *P < 0.05 vs. NC with 0.1% BSA and insulin; #P < 0.05 vs. NC with 10 ng/ml TNFα and insulin (n = 3). (F) The effect of miR-377 inhibition on JNK phosphorylation under conditions of TNFα-induced insulin-resistance. *P < 0.05 vs. NC without insulin; #P < 0.05 vs. NC with insulin (n = 3). (G and H) The effect of miR-377 inhibition on AKT and ERK phosphorylation. *P < 0.05 vs. NC with 0.1% BSA and insulin; #P < 0.05 vs. NC with 10 ng/ml TNFα and insulin (n = 3).


5). Zhang X et al. Neuroprotective Effect of Modified Xijiao Dihuang Decoction against Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury in PC12 Cells: Involvement of TLR4-MyD88/NF-κB Signaling Pathway. Evid Based Complement Alternat Med 2017;2017:3848595 (PubMed: 29234386)

6). Li H et al. Dysifragilone A inhibits LPS‑induced RAW264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol Med Rep 2018 Jan;17(1):674-682 (PubMed: 29115475)

7). Geng J et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 2018 Jan;97:941-947 (PubMed: 29136772)

8). Zhang Q et al. Anti-inflammatory action of ambuic acid, a natural product isolated from the solid culture of Pestalotiopsis neglecta, through blocking ERK/JNK mitogen-activated protein kinase signaling pathway. Exp Ther Med 2018 Aug;16(2):1538-1546 (PubMed: 30116402)

9). Ji M et al. The p75 neurotrophin receptor might mediate sepsis-induced synaptic and cognitive impairments. Behav Brain Res 2018 Jul 16;347:339-349 (PubMed: 29604364)

10). Tang Q et al. Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure. Neurotoxicology 2018 Jul;67:27-36 (PubMed: 29678591)

11). Li Zhao et al. MAPK/AP‑1 pathway regulates benzidine‑induced cell proliferation through the control of cell cycle in human normal bladder epithelial cells. ONCOL LETT 2018;16(4):4628-4634

12). et al. Administration of CoCl 2 Improves Functional Recovery in a Rat Model of Sciatic Nerve Transection Injury.

13). Yang Y et al. Black Sesame Seeds Ethanol Extract Ameliorates Hepatic Lipid Accumulation, Oxidative Stress and Insulin Resistance in Fructose-induced Nonalcoholic Fatty Liver Disease. J Agric Food Chem 2018 Sep 24 (PubMed: 30244573)

14). Zhao L et al. MAPK/AP-1 pathway regulates benzidine-induced cell proliferation through the control of cell cycle in human normal bladder epithelial cells. Oncol Lett 2018 Oct;16(4):4628-4634 (PubMed: 30197677)

No comment
Total 0 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
captcha
Catalog Number :

AF3318-BP

Price/Size :

$200/1mg.
Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 1 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.