Price Size
$280 100ul
$350 200ul

Same day delivery

For pricing and ordering contact:

local distributors
  • Product Name
    Phospho-STAT1 (Tyr701) Antibody
  • Catalog No.
  • RRID
  • Source
  • Application
  • Reactivity
    Human, Mouse, Rat
  • Prediction
    Pig, Bovine, Horse, Rabbit, Dog, Chicken, Xenopus
  • UniProt
  • Mol.Wt
  • Concentration
  • Browse similar products>>

Related Products

Product Information

Alternative Names:Expand▼

CANDF7; DKFZp686B04100; ISGF 3; ISGF3; OTTHUMP00000163552; OTTHUMP00000165046; OTTHUMP00000165047; OTTHUMP00000205845; Signal transducer and activator of transcription 1; Signal transducer and activator of transcription 1, 91kDa; Signal transducer and activator of transcription 1-alpha/beta; Stat1; STAT1_HUMAN; STAT91; Transcription factor ISGF-3 components p91/p84;


WB 1:500-1:2000, IHC 1:50-1:200, IP, IF/ICC 1:100-1:500, ELISA(peptide) 1:20000-1:40000
*The optimal dilutions should be determined by the end user.


Human, Mouse, Rat

Predicted Reactivity:

Pig, Bovine, Horse, Rabbit, Dog, Chicken, Xenopus






The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.


Phospho-STAT1 (Tyr701) Antibody detects endogenous levels of STAT1 only when phosphorylated at Tyrosine 701.


Please cite this product as: Affinity Biosciences Cat# AF3300, RRID:AB_2834719.





Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

Immunogen Information in 3D


A synthesized peptide derived from human STAT1 around the phosphorylation site of Tyr701.


>>Visit The Human Protein Atlas

Gene ID:

Gene Name:


Molecular Weight:

Observed Mol.Wt.: 84kD.
Predicted Mol.Wt.: 87kDa(Calculated)..

Subcellular Location:

Cytoplasm. Nucleus. Translocated into the nucleus in response to IFN-gamma-induced tyrosine phosphorylation and dimerization.


The protein encoded by this gene is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators.


Research Background


Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors. Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state. In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state. Becomes activated in response to KITLG/SCF and KIT signaling. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4.

Post-translational Modifications:

Phosphorylated on tyrosine and serine residues in response to a variety of cytokines/growth hormones including IFN-alpha, IFN-gamma, PDGF and EGF. Activated KIT promotes phosphorylation on tyrosine residues and subsequent translocation to the nucleus. Upon EGF stimulation, phosphorylation on Tyr-701 (lacking in beta form) by JAK1, JAK2 or TYK2 promotes dimerization and subsequent translocation to the nucleus. Growth hormone (GH) activates STAT1 signaling only via JAK2. Tyrosine phosphorylated in response to constitutively activated FGFR1, FGFR2, FGFR3 and FGFR4. Phosphorylation on Ser-727 by several kinases including MAPK14, ERK1/2 and CAMKII on IFN-gamma stimulation, regulates STAT1 transcriptional activity. Phosphorylation on Ser-727 promotes sumoylation though increasing interaction with PIAS. Phosphorylation on Ser-727 by PRKCD induces apoptosis in response to DNA-damaging agents. Phosphorylated on tyrosine residues when PTK2/FAK1 is activated; most likely this is catalyzed by a SRC family kinase. Dephosphorylation on tyrosine residues by PTPN2 negatively regulates interferon-mediated signaling. Upon viral infection or IFN induction, phosphorylation on Ser-708 occurs much later than phosphorylation on Tyr-701 and is required for the binding of ISGF3 on the ISREs of a subset of IFN-stimulated genes IKBKE-dependent. Phosphorylation at Tyr-701 and Ser-708 are mutually exclusive, phosphorylation at Ser-708 requires previous dephosphorylation of Tyr-701.

Sumoylated with SUMO1, SUMO2 and SUMO3. Sumoylation is enhanced by IFN-gamma-induced phosphorylation on Ser-727, and by interaction with PIAS proteins. Enhances the transactivation activity.


Mono-ADP-ribosylated at Glu-657 and Glu-705 by PARP14; ADP-ribosylation prevents phosphorylation at Tyr-701. However, the role of ADP-ribosylation in the prevention of phosphorylation has been called into question and the lack of phosphorylation may be due to sumoylation of Lys-703.

Monomethylated at Lys-525 by SETD2; monomethylation is necessary for phosphorylation at Tyr-701, translocation into the nucleus and activation of the antiviral defense.

Subcellular Location:

Cytoplasm. Nucleus.
Note: Translocated into the nucleus upon tyrosine phosphorylation and dimerization, in response to IFN-gamma and signaling by activated FGFR1, FGFR2, FGFR3 or FGFR4 (PubMed:15322115). Monomethylation at Lys-525 is required for phosphorylation at Tyr-701 and translocation into the nucleus (PubMed:28753426). Translocates into the nucleus in response to interferon-beta stimulation (PubMed:26479788).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Isoform alpha homodimerizes upon IFN-gamma induced phosphorylation. Heterodimer with STAT2 upon IFN-alpha/beta induced phosphorylation. The heterodimer STAT1:STAT2 forms the interferon-stimulated gene factor 3 complex (ISGF3) with IRF9 (By similarity). Interacts (phosphorylated at Ser-727) with PIAS1; the interaction results in release of STAT1 from its target gene. Interacts with IFNAR1; the interaction requires the phosphorylation of IFNAR1 at 'Tyr-466'. Interacts with IFNAR2. Found in a complex with NMI and CREBBP/CBP. Interacts with NMI which is required for CREBBP/CBP recruitment to the complex. Interacts with PTK2/FAK1. Interacts with SRC (By similarity). Interacts with ERBB4 (phosphorylated). Interacts with PARP9 and DTX3L independently of IFN-beta or IFN-gamma-mediated STAT1 'Tyr-701' phosphorylation. Interacts with histone acetyltransferase EP300/p300 in response to INF-gamma stimulation. Interacts with OTOP1 (By similarity).

(Microbial infection) Interacts with Sendai virus C', C, Y1 and Y2 proteins, preventing activation of ISRE and GAS promoter.

(Microbial infection) Interacts with Nipah virus P, V and W proteins preventing activation of ISRE and GAS promoter.

(Microbial infection) Interacts with Rabies virus phosphoprotein preventing activation of ISRE and GAS promoter.

(Microbial infection) Interacts with HCV core protein; the interaction results in STAT1 degradation.

(Microbial infection) Interacts with ebolavirus protein VP24.


Belongs to the transcription factor STAT family.

Research Fields

Research Fields:

· Cellular Processes > Cell growth and death > Necroptosis.(View pathway)
· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.(View pathway)
· Human Diseases > Infectious diseases: Parasitic > Leishmaniasis.
· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.
· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.
· Human Diseases > Infectious diseases: Viral > Hepatitis C.
· Human Diseases > Infectious diseases: Viral > Hepatitis B.
· Human Diseases > Infectious diseases: Viral > Measles.
· Human Diseases > Infectious diseases: Viral > Influenza A.
· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.
· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.
· Human Diseases > Cancers: Overview > Pathways in cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Pancreatic cancer.(View pathway)
· Human Diseases > Immune diseases > Inflammatory bowel disease (IBD).
· Organismal Systems > Immune system > Chemokine signaling pathway.(View pathway)
· Organismal Systems > Development > Osteoclast differentiation.(View pathway)
· Organismal Systems > Immune system > Toll-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > NOD-like receptor signaling pathway.(View pathway)
· Organismal Systems > Immune system > Th1 and Th2 cell differentiation.(View pathway)
· Organismal Systems > Immune system > Th17 cell differentiation.(View pathway)
· Organismal Systems > Endocrine system > Prolactin signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.(View pathway)

Reference Citations:

1). Sun Y;Huo J;Zhong S;Zhu J;Li Y;Li X; et al. Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii. Carbohydr Polym 2021 Sep 15;268:118214. (PubMed: 34127216) [IF=7.182]

2). Liu C et al. STAT1-mediated inhibition of FOXM1 enhances gemcitabine sensitivity in pancreatic cancer. Clin Sci (Lond) 2019 Feb 19 (PubMed: 30782607) [IF=5.223]

3). Gao B et al. Knockdown of ISOC1 inhibits the proliferation and migration and induces the apoptosis of colon cancer cells through the AKT/GSK-3β pathway. Carcinogenesis 2019 Nov 19 (PubMed: 31740942) [IF=4.603]

4). Liu X et al. IRG1 increases MHC class I level in macrophages through STAT-TAP1 axis depending on NADPH oxidase mediated reactive oxygen species. Int Immunopharmacol 2017 Jul;48:76-83 (PubMed: 28477473) [IF=3.943]

Application: WB    Species:human;    Sample:Not available

Fig. 5. Activated STAT1/3 participates in ROS-mediated expression of TAP1 and PSMB9 in IRG1-overexpressed cells. (A) Luciferase reporter assay to analyze the relationship between ISRE and IRG1; (B) IRG1 activates the phosphorylation of STAT1 and STAT3 in different time; (C) Western blot analysis of TAP1 level after pretreating STAT1 or STAT3 inhibitors in IRG1-overexpressed macrophages; (D) Western blot analysis of TAP1 level after STAT1 or STAT3 knockdown in IRG1-overexpressed macrophages; (E) Flow cytometry analysis of MHC I level after STAT1 or STAT3 knockdown in IRG1-overexpressed macrophages (#: not significant vs. shNC group). (F) Western blot analysis of phosphorylation of STAT1 and STAT3 level after pretreating different antioxidant in IRG1-overexpressed macrophages. (*p < 0.05; **p < 0.01; ns: not significant, n = 3.)

5). Zhang Y et al. Dihydrotanshinone I Alleviates Crystalline Silica-Induced Pulmonary Inflammation by Regulation of the Th Immune Response and Inhibition of STAT1/STAT3. Mediators Inflamm 2019 Jul 9;2019:3427053 (PubMed: 31379467) [IF=3.758]

6). Min Zhao et al. HuoXueTongFu Formula Alleviates Intraperitoneal Adhesion by Regulating Macrophage Polarization and the SOCS/JAK2/STAT/PPAR-γ Signalling Pathway. MEDIAT INFLAMM 2019, Article ID 1769374, 17 pages [IF=3.758]

7). Que ZJ et al. Proteomics analysis of tumor exosomes reveals vital pathways of Jinfukang inhibiting circulating tumor cells metastasis in lung cancer. J Ethnopharmacol 2020 Jun 28;256:112802 (PubMed: 32240782) [IF=3.690]

8). Wang J et al. Carotid baroreceptor stimulation improves cardiac performance and reverses ventricular remodelling in canines with pacing-induced heart failure. Life Sci 2019 Feb 24 (PubMed: 30811965) [IF=3.647]

9). Chen L et al. Combination of gemcitabine and erlotinib inhibits recurrent pancreatic cancer growth in mice via the JAK-STAT pathway. Oncol Rep 2018 Mar;39(3):1081-1089 (PubMed: 29328487) [IF=3.417]

10). Chen Z et al. Pioglitazone decreased renal calcium oxalate crystal formation by suppressing M1 macrophage polarization via the PPAR-γ-miR-23 axis. Am J Physiol Renal Physiol 2019 Jul 1;317(1):F137-F151 (PubMed: 31091119) [IF=3.144]

11). Li L;Wei C;Cai S;Fang L; et al. TRPM7 modulates macrophage polarization by STAT1/STAT6 pathways in RAW264. 7 cells. Biochem Biophys Res Commun 2020 Nov 3;S0006-291X(20)31985-9. (PubMed: 33153718)

12). et al. Diosmetin modulates lipogenesis and alleviates inflammatory response in nonalcoholic steatohepatitis through STAT1/CXCL10-dependent pathway.

No comment
Total 0 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
Catalog Number :

(Blocking peptide available as AF3300-BP)

Price/Size :

Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 10 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

High similarity Medium similarity Low similarity No similarity
P42224 as Substrate
Site PTM Type Enzyme
S2 Acetylation
S2 Phosphorylation
R31 Methylation
K40 Ubiquitination
Y68 Phosphorylation
Y106 Phosphorylation
K114 Methylation
K114 Sumoylation
K114 Ubiquitination
K138 Ubiquitination
K140 Ubiquitination
K145 Ubiquitination
K152 Ubiquitination
K161 Ubiquitination
S162 Phosphorylation
Y170 Phosphorylation
K173 Acetylation
K173 Ubiquitination
K175 Methylation
K175 Ubiquitination
T184 Phosphorylation
K193 Sumoylation
K193 Ubiquitination
K200 Ubiquitination
K201 Acetylation
K201 Ubiquitination
K209 Ubiquitination
K240 Ubiquitination
K286 Ubiquitination
K296 Methylation
K296 Ubiquitination
K298 Ubiquitination
K350 Ubiquitination
K359 Ubiquitination
K361 Ubiquitination
K366 Methylation
K366 Ubiquitination
T373 Phosphorylation
K375 Ubiquitination
K379 Ubiquitination
K388 Ubiquitination
K410 Acetylation
K410 Ubiquitination
K413 Acetylation
T417 Phosphorylation
K511 Ubiquitination
K525 Methylation
K525 Ubiquitination
S532 Phosphorylation
K544 Ubiquitination
S583 Phosphorylation
K592 Ubiquitination
K636 Ubiquitination
K637 Methylation
K637 Ubiquitination
S640 Phosphorylation
K652 Sumoylation
K652 Ubiquitination
K665 Methylation
K665 Ubiquitination
Y668 Phosphorylation
K673 Ubiquitination
K679 Sumoylation
K679 Ubiquitination
K685 Ubiquitination
K697 Ubiquitination
T699 Phosphorylation
Y701 Phosphorylation P52333 (JAK3) , P22455 (FGFR4) , P23458 (JAK1) , P22607 (FGFR3) , P00533 (EGFR) , O60674 (JAK2) , P12931 (SRC)
K703 Sumoylation
K703 Ubiquitination
T704 Phosphorylation
S708 Phosphorylation
S710 Phosphorylation
S715 Phosphorylation
S727 Phosphorylation Q13554 (CAMK2B) , P49336 (CDK8) , Q05655 (PRKCD) , P68400 (CSNK2A1) , Q14164 (IKBKE) , Q15759 (MAPK11) , P19525 (EIF2AK2) , P27361 (MAPK3) , P28482 (MAPK1) , P45983 (MAPK8) , P45984 (MAPK9) , O75582 (RPS6KA5) , Q16539 (MAPK14)
S740 Phosphorylation
S745 Phosphorylation
T749 Phosphorylation
IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.

To Top