Product: Phospho-Histone H2A (Thr121) Antibody
Catalog: AF3135
Description: Rabbit polyclonal antibody to Phospho-Histone H2A (Thr121)
Application: WB IHC
Reactivity: Human, Mouse, Rat
Prediction: Bovine, Xenopus
Mol.Wt.: 15kDa; 14kD(Calculated).
Uniprot: P0C0S8 | P04908 | P20671 | Q96KK5 | Q6FI13 | Q7L7L0
RRID: AB_2834570

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
IHC 1:50-1:200, WB 1:1000
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Prediction:
Bovine(100%), Xenopus(100%)
Clonality:
Polyclonal
Specificity:
Phospho-Histone H2A (Thr121) Antibody detects endogenous levels of Histone H2A only when phosphorylated at Threonine 121.
RRID:
AB_2834570
Cite Format: Affinity Biosciences Cat# AF3135, RRID:AB_2834570.
Conjugate:
Unconjugated.
Purification:
The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

H2A histone family, member P; H2A.1; H2A.1b; H2A/n; H2A/p; H2A1_HUMAN; H2AF; H2AFC; H2AFD ANDHIST1H2AL; H2AFD; H2AFI; H2AFN ANDHIST1H2AG; H2AFN; H2AFP; HIST1H2AI; HIST1H2AJ; HIST1H2AK; HIST1H2AL; HIST1H2AM; Histone 1, H2ag; Histone cluster 1, H2ag; Histone H2A type 1; Histone H2A.c/d/i/n/p; Histone H2A/p; pH2A/f; H2A histone family member A; H2A histone family member M; H2A.1; H2A.2; H2A/a; H2A/m; H2A1B_HUMAN; H2AFA; H2AFM; HIST1H2AB; HIST1H2AE; Histone 1 H2ab; Histone 1 H2ae; Histone cluster 1 H2ab; Histone cluster 1 H2ae; Histone H2A type 1-B/E; Histone H2A.2; Histone H2A/a; Histone H2A/m; Histone H2AE; H2a 615; H2A; H2A GL101; H2A histone family member A; H2A.1; H2A.2; H2A/a; H2A/m; H2A/O; H2A/q; H2A1B_HUMAN; H2AFA; H2AFE; H2AFL; H2AFM; H2AFO; H2AFQ; HIST1H2AE; HIST1H2AJ; HIST2H2AA; HIST2H2AA3; HIST2H2AB; HIST2H2AC; Histone 1 H2ae; Histone 2 H2aa3; Histone 2 H2ab; Histone 2 H2ac; Histone H2A type 1 B; Histone H2A type 1 C; Histone H2A type 1 E; Histone H2A type 1 J; Histone H2A type 1-B/E; Histone H2A.2; Histone H2A/a; Histone H2A/m; MGC74460; H2a 615; H2A; H2A GL101; H2A histone family member A; H2A.1; H2A.2; H2A/a; H2A/m; H2A/O; H2A/q; H2A1B_HUMAN; H2AFA; H2AFE; H2AFL; H2AFM; H2AFO; H2AFQ; HIST1H2AE; HIST1H2AJ; HIST2H2AA; HIST2H2AA3; HIST2H2AB; HIST2H2AC; Histone 1 H2ae; Histone 2 H2aa3; Histone 2 H2ab; Histone 2 H2ac; Histone H2A type 1 B; Histone H2A type 1 C; Histone H2A type 1 E; Histone H2A type 1 J; Histone H2A type 1-B/E; Histone H2A.2; Histone H2A/a; Histone H2A/m; MGC74460; H2a 615; H2A; H2A GL101; H2A histone family member A; H2A.1; H2A.2; H2A/a; H2A/m; H2A/O; H2A/q; H2A1B_HUMAN; H2AFA; H2AFE; H2AFL; H2AFM; H2AFO; H2AFQ; HIST1H2AE; HIST1H2AJ; HIST2H2AA; HIST2H2AA3; HIST2H2AB; HIST2H2AC; Histone 1 H2ae; Histone 2 H2aa3; Histone 2 H2ab; Histone 2 H2ac; Histone H2A type 1 B; Histone H2A type 1 C; Histone H2A type 1 E; Histone H2A type 1 J; Histone H2A type 1-B/E; Histone H2A.2; Histone H2A/a; Histone H2A/m; MGC74460; H2a 615; H2A; H2A GL101; H2A histone family member A; H2A.1; H2A.2; H2A/a; H2A/m; H2A/O; H2A/q; H2A1B_HUMAN; H2AFA; H2AFE; H2AFL; H2AFM; H2AFO; H2AFQ; HIST1H2AE; HIST1H2AJ; HIST2H2AA; HIST2H2AA3; HIST2H2AB; HIST2H2AC; Histone 1 H2ae; Histone 2 H2aa3; Histone 2 H2ab; Histone 2 H2ac; Histone H2A type 1 B; Histone H2A type 1 C; Histone H2A type 1 E; Histone H2A type 1 J; Histone H2A type 1-B/E; Histone H2A.2; Histone H2A/a; Histone H2A/m; MGC74460;

Immunogens

Immunogen:
Uniprot:
Gene(ID):
Description:
H2A.1 Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability.
Sequence:
MSGRGKQGGKARAKAKTRSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVYLAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELNKLLGKVTIAQGGVLPNIQAVLLPKKTESHHKAKGK

MSGRGKQGGKARAKAKTRSSRAGLQFPVGRVHRLLRKGNYSERVGAGAPVYLAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELNKLLGRVTIAQGGVLPNIQAVLLPKKTESHHKAKGK

MSGRGKQGGKARAKAKTRSSRAGLQFPVGRVHRLLRKGNYSERVGAGAPVYLAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELNKLLGKVTIAQGGVLPNIQAVLLPKKTESHHKAKGK

MSGRGKQGGKARAKAKTRSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVYLAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELNKLLGKVTIAQGGVLPNIQAVLLPKKTESHHKAK

MSGRGKQGGKARAKAKSRSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVYMAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELNKLLGKVTIAQGGVLPNIQAVLLPKKTESHHKAKGK

MSGRGKQGGKARAKAKSRSSRAGLQFPVGRVHRLLRKGNYSERVGAGAPVYLAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELNKLLGRVTIAQGGVLPNIQAVLLPKKTESHHKAKGK

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Bovine
100
Xenopus
100
Pig
0
Horse
0
Sheep
0
Dog
0
Zebrafish
0
Chicken
0
Rabbit
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - P0C0S8/P04908/P20671/Q96KK5/Q6FI13/Q7L7L0 As Substrate

Site PTM Type Enzyme
S2 Acetylation
S2 Phosphorylation
K6 Acetylation
K6 Methylation
K10 Acetylation
K14 Acetylation
K14 Ubiquitination
K16 Ubiquitination
S20 Phosphorylation
R21 Methylation
R30 Methylation
K37 Ubiquitination
R82 Methylation
R89 Methylation
K96 Acetylation
K96 Ubiquitination
R100 Methylation
T102 Phosphorylation
Q105 Methylation
K119 Acetylation
K119 Sumoylation
K119 Ubiquitination
K120 Acetylation
K120 Sumoylation
K120 Ubiquitination
T121 Phosphorylation
S123 Phosphorylation
K126 Ubiquitination
K128 Ubiquitination
K130 Ubiquitination
Site PTM Type Enzyme
S2 Acetylation
S2 Phosphorylation O75582 (RPS6KA5)
K6 Acetylation
K10 Acetylation
K14 Ubiquitination
K16 Ubiquitination
S19 Phosphorylation
Q105 Methylation
K119 Acetylation
K119 Sumoylation
K119 Ubiquitination
K120 Ubiquitination
T121 Phosphorylation PR:O43683 (hBUB1)
Site PTM Type Enzyme
Acetylation
S2 Acetylation
S2 Phosphorylation
K6 Acetylation
K6 Methylation
K10 Acetylation
K14 Acetylation
K14 Ubiquitination
K16 Ubiquitination
R21 Methylation
R30 Methylation
R82 Methylation
R89 Methylation
K96 Acetylation
K96 Ubiquitination
K100 Ubiquitination
T102 Phosphorylation
Q105 Methylation
K119 Sumoylation
K119 Ubiquitination
K120 Sumoylation
K120 Ubiquitination
T121 Phosphorylation
S123 Phosphorylation
K126 Ubiquitination
Site PTM Type Enzyme
S2 Acetylation
S2 Phosphorylation
K6 Acetylation
K6 Methylation
K10 Acetylation
K14 Acetylation
K14 Ubiquitination
K16 Ubiquitination
S20 Phosphorylation
R21 Methylation
R30 Methylation
K37 Ubiquitination
Y40 Phosphorylation
Y51 Phosphorylation
R72 Methylation
R82 Methylation
R89 Methylation
K96 Acetylation
K96 Ubiquitination
K100 Acetylation
K100 Ubiquitination
T102 Phosphorylation
Q105 Methylation
K119 Acetylation
K119 Sumoylation
K119 Ubiquitination
K120 Acetylation
K120 Sumoylation
K120 Ubiquitination
T121 Phosphorylation
S123 Phosphorylation
K126 Ubiquitination
K128 Ubiquitination
K130 Ubiquitination
Site PTM Type Enzyme
Acetylation
S2 Acetylation
S2 Phosphorylation O75582 (RPS6KA5)
K6 Acetylation
K6 Methylation
K10 Acetylation
K14 Acetylation
K14 Ubiquitination
K16 Ubiquitination
S20 Phosphorylation
R21 Methylation
R30 Methylation
K37 Ubiquitination
R82 Methylation
R89 Methylation
K96 Acetylation
K96 Ubiquitination
R100 Methylation
T102 Phosphorylation
Q105 Methylation
K119 Acetylation
K119 Sumoylation
K119 Ubiquitination
K120 Acetylation
K120 Sumoylation
K120 Ubiquitination
T121 Phosphorylation
S123 Phosphorylation
K126 Ubiquitination
K128 Ubiquitination
K130 Ubiquitination
Site PTM Type Enzyme
Acetylation
S2 Acetylation
S2 Phosphorylation
K6 Acetylation
K6 Methylation
K10 Acetylation
K14 Acetylation
K14 Ubiquitination
K16 Ubiquitination
S20 Phosphorylation
R21 Methylation
R30 Methylation
K37 Ubiquitination
Y40 Phosphorylation
R82 Methylation
R89 Methylation
K96 Acetylation
K96 Ubiquitination
K100 Ubiquitination
T102 Phosphorylation
Q105 Methylation
K119 Sumoylation
K119 Ubiquitination
K120 Sumoylation
K120 Ubiquitination
T121 Phosphorylation
S123 Phosphorylation
K126 Ubiquitination

Research Backgrounds

Function:

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

PTMs:

Deiminated on Arg-4 in granulocytes upon calcium entry.

Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.

Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.

Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.

Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex.

Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.

Subcellular Location:

Nucleus. Chromosome.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.

Family&Domains:

Belongs to the histone H2A family.

Function:

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

PTMs:

Deiminated on Arg-4 in granulocytes upon calcium entry.

Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.

Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.

Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex.

Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.

Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.

Subcellular Location:

Nucleus. Chromosome.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.

Family&Domains:

Belongs to the histone H2A family.

Function:

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

PTMs:

Deiminated on Arg-4 in granulocytes upon calcium entry.

Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.

Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.

Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex.

Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.

Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.

Subcellular Location:

Nucleus. Chromosome.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.

Family&Domains:

Belongs to the histone H2A family.

Function:

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

PTMs:

Deiminated on Arg-4 in granulocytes upon calcium entry.

Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.

Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.

Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex.

Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.

Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.

Subcellular Location:

Nucleus. Chromosome.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.

Family&Domains:

Belongs to the histone H2A family.

Function:

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

PTMs:

Deiminated on Arg-4 in granulocytes upon calcium entry.

Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.

Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.

Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex.

Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.

Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.

Subcellular Location:

Nucleus. Chromosome.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.

Family&Domains:

Belongs to the histone H2A family.

Function:

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

PTMs:

Deiminated on Arg-4 in granulocytes upon calcium entry.

Monoubiquitination of Lys-120 (H2AK119Ub) by RING1, TRIM37 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. It is involved in the initiation of both imprinted and random X inactivation. Ubiquitinated H2A is enriched in inactive X chromosome chromatin. Ubiquitination of H2A functions downstream of methylation of 'Lys-27' of histone H3 (H3K27me). H2AK119Ub by RNF2/RING2 can also be induced by ultraviolet and may be involved in DNA repair. Monoubiquitination of Lys-120 (H2AK119Ub) by TRIM37 may promote transformation of cells in a number of breast cancers. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin; RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. Deubiquitinated by USP51 at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) after damaged DNA is repaired. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events.

Phosphorylation on Ser-2 (H2AS1ph) is enhanced during mitosis. Phosphorylation on Ser-2 by RPS6KA5/MSK1 directly represses transcription. Acetylation of H3 inhibits Ser-2 phosphorylation by RPS6KA5/MSK1. Phosphorylation at Thr-121 (H2AT120ph) by DCAF1 is present in the regulatory region of many tumor suppresor genes and down-regulates their transcription.

Glutamine methylation at Gln-105 (H2AQ104me) by FBL is specifically dedicated to polymerase I. It is present at 35S ribosomal DNA locus and impairs binding of the FACT complex.

Symmetric dimethylation on Arg-4 by the PRDM1/PRMT5 complex may play a crucial role in the germ-cell lineage.

Crotonylation (Kcr) is specifically present in male germ cells and marks testis-specific genes in post-meiotic cells, including X-linked genes that escape sex chromosome inactivation in haploid cells. Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors. It is also associated with post-meiotically activated genes on autosomes.

Subcellular Location:

Nucleus. Chromosome.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.

Family&Domains:

Belongs to the histone H2A family.

Research Fields

· Cellular Processes > Cell growth and death > Necroptosis.   (View pathway)

· Human Diseases > Substance dependence > Alcoholism.

· Human Diseases > Immune diseases > Systemic lupus erythematosus.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.