Product: Phospho-IRE1 (Ser724) Antibody
Catalog: DF8322
Source: Rabbit
Application: WB, ELISA(peptide)
Reactivity: Human, Mouse, Rat
Prediction: Pig, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
Mol.Wt.: 110 kD; 110kD(Calculated).
Uniprot: O75460
RRID: AB_2841598

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

WB 1:1000-3000, ELISA(peptide) 1:20000-1:40000
*The optimal dilutions should be determined by the end user.
Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(90%)
Phospho-IRE1 (Ser724) Antibody detects endogenous levels of IRE1 only when phosphorylated at Ser724.
Cite Format: Affinity Biosciences Cat# DF8322, RRID:AB_2841598.
The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.


Endoplasmic reticulum (ER) to nucleus signalling 1; Endoplasmic reticulum to nucleus signaling 1; Endoplasmic reticulum-to-nucleus signaling 1; Endoribonuclease; ER to nucleus signaling 1; ERN 1; Ern1; ERN1_HUMAN; hIRE 1p; hIRE1p; Inositol requiring 1; Inositol requiring 1, S. cerevisiae, homolog of; Inositol requiring enzyme 1, S. cerevisiae, homolog of; Inositol requiring protein 1; inositol-requiring enzyme 1; Inositol-requiring protein 1; IRE 1; IRE 1a; IRE 1P; Ire1 alpha; Ire1-alpha; IRE1a; Ire1alpha; IRE1P; MGC163277; MGC163279; Protein kinase/endoribonuclease; RGD1559716; Serine/threonine protein kinase/endoribonuclease IRE1;



Synthetic peptide corresponding to Human IRE1 around the phosphorylation site of Ser724.

O75460 ERN1_HUMAN:

Ubiquitously expressed. High levels observed in pancreatic tissue.




Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - O75460 As Substrate

Site PTM Type Enzyme
T49 Phosphorylation
K88 Ubiquitination
K95 Ubiquitination
T132 Phosphorylation
Y161 Phosphorylation
Y166 Phosphorylation
Y179 Phosphorylation
T283 Phosphorylation
Y289 Phosphorylation
K374 Acetylation
K374 Ubiquitination
K485 Ubiquitination
S533 Phosphorylation
S536 Phosphorylation
S544 Phosphorylation
S548 Phosphorylation
S551 Phosphorylation
Y628 Phosphorylation O75460 (ERN1)
K633 Ubiquitination
K706 Ubiquitination
S724 Phosphorylation O75460 (ERN1)
S726 Phosphorylation
S729 Phosphorylation
K851 Ubiquitination
K860 Ubiquitination
T973 Phosphorylation

PTMs - O75460 As Enzyme

Substrate Site Source
O75460 (ERN1) Y628 Uniprot
O75460 (ERN1) S724 Uniprot

Research Backgrounds


Serine/threonine-protein kinase and endoribonuclease that acts as a key sensor for the endoplasmic reticulum unfolded protein response (UPR). In unstressed cells, the endoplasmic reticulum luminal domain is maintained in its inactive monomeric state by binding to the endoplasmic reticulum chaperone HSPA5/BiP. Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP, allowing the luminal domain to homodimerize, promoting autophosphorylation of the kinase domain and subsequent activation of the endoribonuclease activity. The endoribonuclease activity is specific for XBP1 mRNA and excises 26 nucleotides from XBP1 mRNA. The resulting spliced transcript of XBP1 encodes a transcriptional activator protein that up-regulates expression of UPR target genes. Acts as an upstream signal for ER stress-induced GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane by modulating the expression and localization of SEC16A.


Autophosphorylated following homodimerization. Autophosphorylation promotes activation of the endoribonuclease domain.

ADP-ribosylated by PARP16 upon ER stress, which increases both kinase and endonuclease activities.

Subcellular Location:

Endoplasmic reticulum membrane>Single-pass type I membrane protein.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Tissue Specificity:

Ubiquitously expressed. High levels observed in pancreatic tissue.

Subunit Structure:

Monomer. Homodimer; disulfide-linked; homodimerization takes place in response to endoplasmic reticulum stress and promotes activation of the kinase and endoribonuclease activities. Dimer formation is driven by hydrophobic interactions within the N-terminal luminal domains and stabilized by disulfide bridges. Interacts (via the luminal region) with DNAJB9/ERdj4; interaction takes place in unstressed cells and promotes recruitment of HSPA5/BiP. Interacts (via the luminal region) with HSPA5/BiP; HSPA5/BiP is a negative regulator of the unfolded protein response (UPR) that prevents homodimerization of ERN1/IRE1 and subsequent activation of the protein. Interacts with PDIA6, a negative regulator of the UPR; the interaction is direct and disrupts homodimerization. Interacts with DAB2IP (via PH domain); the interaction occurs in a endoplasmic reticulum stress-induced dependent manner and is required for subsequent recruitment of TRAF2 to ERN1/IRE1 (By similarity). Interacts with TAOK3 and TRAF2. Interacts with RNF13.


Belongs to the protein kinase superfamily. Ser/Thr protein kinase family.

Research Fields

· Cellular Processes > Transport and catabolism > Autophagy - animal.   (View pathway)

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Genetic Information Processing > Folding, sorting and degradation > Protein processing in endoplasmic reticulum.   (View pathway)

· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).

· Human Diseases > Neurodegenerative diseases > Alzheimer's disease.


1). Wu X et al. Protective Effect of Patchouli Alcohol Against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating VLDL Metabolism in Rats. Front Pharmacol 2019 Oct 1;10:1134 (PubMed: 31632274) [IF=4.225]

Application: WB    Species: rat    Sample: liver

FIGURE 4 | PA treatment attenuated HFD-induced ER stress in rats. (A) Representative immunoreactive bands of GRP78, PERK, p-PERK, IRE1α, p-IRE1α, and ATF6

2). Xu J et al. Dl-3-n-Butylphthalide Ameliorates Diabetic Nephropathy by Ameliorating Excessive Fibrosis and Podocyte Apoptosis. Front Pharmacol 2021 Aug 23;12:628950. (PubMed: 34497508) [IF=4.225]

Application: WB    Species: Mice    Sample: kidney tissues

FIGURE 6 DL-NBP treatment inhibits diabetes-induced elevated ERS in kidney. (A–F) Western blotting and quantification of ERS-elevated protein expression [p-PERK (A,B), p-IRE1α (A,C), GRP78 (A,D), ATF-6 (A,E), CHOP (A,F)] in kidney of mice from each group (n = 3). Protein expression was normalized to the expression of β-actin. (G,H) Representative images of immunohistochemical staining of CHOP in kidney of mice from each group (n = 3). Scale bar = 20 μm. Data are presented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001 vs. db/m control; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. db/db mice.

3). Li F et al. Icariin improves the cognitive function of APP/PS1 mice via suppressing endoplasmic reticulum stress. Life Sci 2019 Aug 7:116739 (PubMed: 31400352) [IF=3.647]

Application: WB    Species: mouse    Sample: hippocampus

Fig.5| Effects of ICA on ER stress in the hippocampus of APP/PS1 mice. ER stress was activated in the hippocampus of APP/PS1 mice evidenced by the high levels of GRP78, ATF6, and p-IRE1α. ICA treatment decreased GRP78 level, not affected the ATF6, IRE1α and IRE1αphosphorylation. (A) Immunoblots.

4). Boonyong C et al. Modulation of non‐steroidal anti‐inflammatory drug‐induced, ER stress‐mediated apoptosis in Caco‐2 cells by different polyphenolic antioxidants: a mechanistic study. J Pharm Pharmacol 2020 Jul 27. (PubMed: 32716561)

Application: WB    Species: human    Sample: Caco-2 cells

Figure 7| Expression of IRE-1a/JNK1/2 proteins and their phosphorylated forms (a) in Caco-2 cells after treatment with ER stressors (INDO, DIC,TUN, TGN) in the presence of the test compounds (EGCG, HYPO, PHY, ML385) for 48 h.

5). Dihydroartemisinin promotes CHAC1 transcription to induce ferroptosis in primary liver cancer cells: activation of unfolded protein responses.

Restrictive clause


Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.